These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 35152984)

  • 41. SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres.
    Kenny AP; Kozlowski D; Oleksyn DW; Angerer LM; Angerer RC
    Development; 1999 Dec; 126(23):5473-83. PubMed ID: 10556071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.
    Izumi-Kurotani A; Kiyomoto M
    Adv Space Biol Med; 2003; 9():83-99. PubMed ID: 14631630
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
    Revilla-i-Domingo R; Oliveri P; Davidson EH
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12383-8. PubMed ID: 17636127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SPICULE FORMATION IN VITRO BY THE DESCENDANTS OF PRECOCIOUS MICROMERE FORMED AT THE 8-CELL STAGE OF SEA URCHIN EMBRYO.
    Kitajima T; Okazaki K
    Dev Growth Differ; 1980; 22(3):265-279. PubMed ID: 37281606
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Tsuchimoto J; Kiyomoto M; Amemiya S; Yamaguchi M
    Dev Biol; 2008 Feb; 314(2):433-42. PubMed ID: 18166171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polarized distribution of L-type calcium channels in early sea urchin embryos.
    Dale B; Yazaki I; Tosti E
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C822-5. PubMed ID: 9316401
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The synthesis and secretion of collagen by cultured sea urchin micromeres.
    Benson S; Smith L; Wilt F; Shaw R
    Exp Cell Res; 1990 May; 188(1):141-6. PubMed ID: 2328772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fractionation of Micromeres, Mesomeres, and Macromeres of 16-cell Stage Sea Urchin Embryos by Elutriation*: (sea urchin embryo/blastomere/elutriation/micromere/mesomere/macromere).
    Yamaguchi M; Kinoshita T; Ohba Y
    Dev Growth Differ; 1994 Aug; 36(4):381-387. PubMed ID: 37281624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Collagen metabolism and spicule formation in sea urchin micromeres.
    Blankenship J; Benson S
    Exp Cell Res; 1984 May; 152(1):98-104. PubMed ID: 6714328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activator of G-protein signaling in asymmetric cell divisions of the sea urchin embryo.
    Voronina E; Wessel GM
    Dev Growth Differ; 2006 Dec; 48(9):549-57. PubMed ID: 17118010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Maternal factors regulating symmetry breaking and dorsal-ventral axis formation in the sea urchin embryo.
    Molina MD; Lepage T
    Curr Top Dev Biol; 2020; 140():283-316. PubMed ID: 32591077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Postembryonic segregation of the germ line in sea urchins in relation to indirect development.
    Ransick A; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6759-63. PubMed ID: 8692891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Serum effects on the in vitro differentiation of sea urchin micromeres.
    McCarthy RA; Spiegel M
    Exp Cell Res; 1983 Dec; 149(2):433-41. PubMed ID: 6641810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lineage tracing shows that cell size asymmetries predict the dorsoventral axis in the sea star embryo.
    Barone V; Byrne M; Lyons DC
    BMC Biol; 2022 Aug; 20(1):179. PubMed ID: 35971116
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SPECIES SPECIFIC PATTERN OF CILIOGENESIS IN DEVELOPING SEA URCHIN EMBRYOS.
    Masuda M
    Dev Growth Differ; 1979; 21(6):545-552. PubMed ID: 37281736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma.
    Wray GA; Raff RA
    Dev Biol; 1990 Sep; 141(1):41-54. PubMed ID: 2391005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Micromere-specific cell surface proteins of 16-cell stage sea urchin embryos.
    De Simone DW; Spiegel M
    Exp Cell Res; 1985 Jan; 156(1):7-14. PubMed ID: 3965293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.