BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 35152989)

  • 1. High-efficiency of genetic modification using CRISPR/Cpf1 system for engineered CAR-T cell therapy.
    Ding R; Chao CC; Gao Q
    Methods Cell Biol; 2022; 167():1-14. PubMed ID: 35152989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia.
    Hu Y; Zhou Y; Zhang M; Ge W; Li Y; Yang L; Wei G; Han L; Wang H; Yu S; Chen Y; Wang Y; He X; Zhang X; Gao M; Yang J; Li X; Ren J; Huang H
    Clin Cancer Res; 2021 May; 27(10):2764-2772. PubMed ID: 33627493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of CRISPR/Cas9 gene editing to improve chimeric antigen-receptor T cell therapy: A systematic review and meta-analysis of preclinical studies.
    Maganti HB; Kirkham AM; Bailey AJM; Shorr R; Kekre N; Pineault N; Allan DS
    Cytotherapy; 2022 Apr; 24(4):405-412. PubMed ID: 35039239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies.
    Hu KJ; Yin ETS; Hu YX; Huang H
    Curr Med Sci; 2021 Jun; 41(3):420-430. PubMed ID: 34218353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy.
    Li C; Mei H; Hu Y
    Brief Funct Genomics; 2020 May; 19(3):175-182. PubMed ID: 31950135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy.
    Liu X; Zhao Y
    Curr Res Transl Med; 2018 May; 66(2):39-42. PubMed ID: 29691200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy.
    Gao Q; Dong X; Xu Q; Zhu L; Wang F; Hou Y; Chao CC
    Cancer Med; 2019 Aug; 8(9):4254-4264. PubMed ID: 31199589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy.
    Salas-Mckee J; Kong W; Gladney WL; Jadlowsky JK; Plesa G; Davis MM; Fraietta JA
    Hum Vaccin Immunother; 2019; 15(5):1126-1132. PubMed ID: 30735463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adeno-Associated Viral Vectors for Homology-Directed Generation of CAR-T Cells.
    Moço PD; Aharony N; Kamen A
    Biotechnol J; 2020 Jan; 15(1):e1900286. PubMed ID: 31642193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells.
    Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X
    Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explorations of CRISPR/Cas9 for improving the long-term efficacy of universal CAR-T cells in tumor immunotherapy.
    Naeem M; Hazafa A; Bano N; Ali R; Farooq M; Razak SIA; Lee TY; Devaraj S
    Life Sci; 2023 Mar; 316():121409. PubMed ID: 36681183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building Potent Chimeric Antigen Receptor T Cells With CRISPR Genome Editing.
    Liu J; Zhou G; Zhang L; Zhao Q
    Front Immunol; 2019; 10():456. PubMed ID: 30941126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent transposon engineering and CRISPR/Cas9 genome editing of primary CLL-1 chimeric antigen receptor-natural killer cells.
    Gurney M; O'Reilly E; Corcoran S; Brophy S; Krawczyk J; Otto NM; Hermanson DL; Childs RW; Szegezdi E; O'Dwyer ME
    Cytotherapy; 2022 Nov; 24(11):1087-1094. PubMed ID: 36050244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation-inducible CAR expression enables precise control over engineered CAR T cell function.
    Fraessle SP; Tschulik C; Effenberger M; Cletiu V; Gerget M; Schober K; Busch DH; Germeroth L; Stemberger C; Poltorak MP
    Commun Biol; 2023 Jun; 6(1):604. PubMed ID: 37277433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing.
    Dimitri A; Herbst F; Fraietta JA
    Mol Cancer; 2022 Mar; 21(1):78. PubMed ID: 35303871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells.
    Glaser V; Flugel C; Kath J; Du W; Drosdek V; Franke C; Stein M; Pruß A; Schmueck-Henneresse M; Volk HD; Reinke P; Wagner DL
    Genome Biol; 2023 Apr; 24(1):89. PubMed ID: 37095570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunotherapy to get on point with base editing.
    Harbottle JA
    Drug Discov Today; 2021 Oct; 26(10):2350-2357. PubMed ID: 33857616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic potential of CRISPR/CAS9 genome modification in T cell-based immunotherapy of cancer.
    Kavousinia P; Ahmadi MH; Sadeghian H; Hosseini Bafghi M
    Cytotherapy; 2024 May; 26(5):436-443. PubMed ID: 38466263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step generation of modular CAR-T cells with AAV-Cpf1.
    Dai X; Park JJ; Du Y; Kim HR; Wang G; Errami Y; Chen S
    Nat Methods; 2019 Mar; 16(3):247-254. PubMed ID: 30804551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.