These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35153571)

  • 1. Stochastic variational principles for the collisional Vlasov-Maxwell and Vlasov-Poisson equations.
    Tyranowski TM
    Proc Math Phys Eng Sci; 2021 Aug; 477(2252):20210167. PubMed ID: 35153571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New variational principle for the Vlasov-Maxwell equations.
    Brizard AJ
    Phys Rev Lett; 2000 Jun; 84(25):5768-71. PubMed ID: 10991050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-preserving strategy for conservative simulation of the relativistic nonlinear Landau-Fokker-Planck equation.
    Shiroto T; Sentoku Y
    Phys Rev E; 2019 May; 99(5-1):053309. PubMed ID: 31212484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-order convergence of Milstein schemes for McKean-Vlasov equations and interacting particle systems.
    Bao J; Reisinger C; Ren P; Stockinger W
    Proc Math Phys Eng Sci; 2021 Jan; 477(2245):20200258. PubMed ID: 33642922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-inspired method for solving the Vlasov-Poisson equations.
    Ye E; Loureiro NFG
    Phys Rev E; 2022 Sep; 106(3-2):035208. PubMed ID: 36266832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag.
    Plastino AR; Curado EMF; Nobre FD; Tsallis C
    Phys Rev E; 2018 Feb; 97(2-1):022120. PubMed ID: 29548132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic discrete Hamiltonian variational integrators.
    Holm DD; Tyranowski TM
    BIT Numer Math; 2018; 58(4):1009-1048. PubMed ID: 30894795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hermitian structure for the linearized Vlasov-Poisson and Vlasov-Maxwell equations.
    Larsson J
    Phys Rev Lett; 1991 Mar; 66(11):1466-1468. PubMed ID: 10043216
    [No Abstract]   [Full Text] [Related]  

  • 9. Information upper bound for McKean-Vlasov stochastic differential equations.
    Lv L; Zhang Y; Wang Z
    Chaos; 2021 May; 31(5):051103. PubMed ID: 34240949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons.
    Baladron J; Fasoli D; Faugeras O; Touboul J
    J Math Neurosci; 2012 May; 2(1):10. PubMed ID: 22657695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variational principles for stochastic soliton dynamics.
    Holm DD; Tyranowski TM
    Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150827. PubMed ID: 27118922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation.
    Maoutsa D; Reich S; Opper M
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic magnetic fields in Vlasov-Maxwell equilibria.
    Ghosh A; Janaki MS; Dasgupta B; Bandyopadhyay A
    Chaos; 2014 Mar; 24(1):013117. PubMed ID: 24697379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Estimation of a Signal Generated Using a Dynamical System Modeled with McKean-Vlasov Stochastic Differential Equations.
    Dragan V; Aberkane S
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic Fokker-Planck equation in random environments.
    Bressloff PC
    Phys Rev E; 2016 Oct; 94(4-1):042129. PubMed ID: 27841623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems.
    Frank TD; Beek PJ; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic susceptibility and transport theory of collisional plasmas.
    Brantov AV; Bychenkov VY; Rozmus W; Capjack CE
    Phys Rev Lett; 2004 Sep; 93(12):125002. PubMed ID: 15447270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global density equations for interacting particle systems with stochastic resetting: From overdamped Brownian motion to phase synchronization.
    Bressloff PC
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38558049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full self-consistent Vlasov-Maxwell solution.
    Cordonnier A; Leoncini X; Dif-Pradalier G; Garbet X
    Phys Rev E; 2022 Dec; 106(6-1):064209. PubMed ID: 36671124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of intense electromagnetic waves in a relativistically hot plasma.
    Shukla PK; Eliasson B
    Phys Rev Lett; 2005 Feb; 94(6):065002. PubMed ID: 15783737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.