These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Hermitian structure for the linearized Vlasov-Poisson and Vlasov-Maxwell equations. Larsson J Phys Rev Lett; 1991 Mar; 66(11):1466-1468. PubMed ID: 10043216 [No Abstract] [Full Text] [Related]
9. Information upper bound for McKean-Vlasov stochastic differential equations. Lv L; Zhang Y; Wang Z Chaos; 2021 May; 31(5):051103. PubMed ID: 34240949 [TBL] [Abstract][Full Text] [Related]
10. Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. Baladron J; Fasoli D; Faugeras O; Touboul J J Math Neurosci; 2012 May; 2(1):10. PubMed ID: 22657695 [TBL] [Abstract][Full Text] [Related]
11. Variational principles for stochastic soliton dynamics. Holm DD; Tyranowski TM Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150827. PubMed ID: 27118922 [TBL] [Abstract][Full Text] [Related]
12. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation. Maoutsa D; Reich S; Opper M Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573 [TBL] [Abstract][Full Text] [Related]
13. Chaotic magnetic fields in Vlasov-Maxwell equilibria. Ghosh A; Janaki MS; Dasgupta B; Bandyopadhyay A Chaos; 2014 Mar; 24(1):013117. PubMed ID: 24697379 [TBL] [Abstract][Full Text] [Related]
14. Optimal Estimation of a Signal Generated Using a Dynamical System Modeled with McKean-Vlasov Stochastic Differential Equations. Dragan V; Aberkane S Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920493 [TBL] [Abstract][Full Text] [Related]
15. Stochastic Fokker-Planck equation in random environments. Bressloff PC Phys Rev E; 2016 Oct; 94(4-1):042129. PubMed ID: 27841623 [TBL] [Abstract][Full Text] [Related]
16. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. Frank TD; Beek PJ; Friedrich R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011 [TBL] [Abstract][Full Text] [Related]
17. Kinetic susceptibility and transport theory of collisional plasmas. Brantov AV; Bychenkov VY; Rozmus W; Capjack CE Phys Rev Lett; 2004 Sep; 93(12):125002. PubMed ID: 15447270 [TBL] [Abstract][Full Text] [Related]
18. Global density equations for interacting particle systems with stochastic resetting: From overdamped Brownian motion to phase synchronization. Bressloff PC Chaos; 2024 Apr; 34(4):. PubMed ID: 38558049 [TBL] [Abstract][Full Text] [Related]