These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35153579)

  • 1. Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach.
    Doan NAK; Polifke W; Magri L
    Proc Math Phys Eng Sci; 2021 Sep; 477(2253):20210135. PubMed ID: 35153579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing machine learning prediction of dynamics: Novel noise-inspired regularization tested with reservoir computing.
    Wikner A; Harvey J; Girvan M; Hunt BR; Pomerance A; Antonsen T; Ott E
    Neural Netw; 2024 Feb; 170():94-110. PubMed ID: 37977092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the combination of data-driven and model-based elements in hybrid reservoir computing.
    Duncan D; Räth C
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37831789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On prediction of chaotic dynamics in semiconductor lasers by reservoir computing.
    Li XZ; Yang B; Zhao S; Gu Y; Zhao M
    Opt Express; 2023 Nov; 31(24):40592-40603. PubMed ID: 38041355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study.
    Shahi S; Fenton FH; Cherry EM
    Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model.
    Pathak J; Wikner A; Fussell R; Chandra S; Hunt BR; Girvan M; Ott E
    Chaos; 2018 Apr; 28(4):041101. PubMed ID: 31906641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series.
    Chen N; Majda AJ
    Chaos; 2020 Mar; 30(3):033101. PubMed ID: 32237755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
    Racca A; Magri L
    Neural Netw; 2021 Oct; 142():252-268. PubMed ID: 34034072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing.
    Tsuchiyama K; Röhm A; Mihana T; Horisaki R; Naruse M
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37347641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive balancing of exploration and exploitation around the edge of chaos in internal-chaos-based learning.
    Matsuki T; Shibata K
    Neural Netw; 2020 Dec; 132():19-29. PubMed ID: 32861145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic approach for assessing the predictability of chaotic time series using reservoir computing.
    Khovanov IA
    Chaos; 2021 Aug; 31(8):083105. PubMed ID: 34470249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events.
    Ray A; Chakraborty T; Ghosh D
    Chaos; 2021 Nov; 31(11):111105. PubMed ID: 34881612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting slow and fast neuronal dynamics with machine learning.
    Follmann R; Rosa E
    Chaos; 2019 Nov; 29(11):113119. PubMed ID: 31779355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-free forecasting of partially observable spatiotemporally chaotic systems.
    Gupta V; Li LKB; Chen S; Wan M
    Neural Netw; 2023 Mar; 160():297-305. PubMed ID: 36716509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing bifurcation diagrams of chaotic circuits with reservoir computing.
    Luo H; Du Y; Fan H; Wang X; Guo J; Wang X
    Phys Rev E; 2024 Feb; 109(2-1):024210. PubMed ID: 38491568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-assisted deep learning of rare extreme events from partial observations.
    Asch A; J Brady E; Gallardo H; Hood J; Chu B; Farazmand M
    Chaos; 2022 Apr; 32(4):043112. PubMed ID: 35489849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of chaotic systems through reservoir computing.
    Lin ZF; Liang YM; Zhao JL; Feng J; Kapitaniak T
    Chaos; 2023 Dec; 33(12):. PubMed ID: 38079650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting nonsmooth chaotic dynamics by reservoir computing.
    Shi L; Wang H; Wang S; Du R; Qu SX
    Phys Rev E; 2024 Jan; 109(1-1):014214. PubMed ID: 38366462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.