These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35153585)

  • 1. Structured time-delay models for dynamical systems with connections to Frenet-Serret frame.
    Hirsh SM; Ichinaga SM; Brunton SL; Nathan Kutz J; Brunton BW
    Proc Math Phys Eng Sci; 2021 Oct; 477(2254):20210097. PubMed ID: 35153585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaos as an intermittently forced linear system.
    Brunton SL; Brunton BW; Proctor JL; Kaiser E; Kutz JN
    Nat Commun; 2017 May; 8(1):19. PubMed ID: 28559566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
    Brunton SL; Brunton BW; Proctor JL; Kutz JN
    PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Playing HAVOK on the Chaos Caused by Internet Trolls.
    Martynova E; Golino H; Boker S
    Res Sq; 2023 Apr; ():. PubMed ID: 37163047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principal component trajectories for modeling spectrally continuous dynamics as forced linear systems.
    Dylewsky D; Kaiser E; Brunton SL; Kutz JN
    Phys Rev E; 2022 Jan; 105(1-2):015312. PubMed ID: 35193205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Method Using HAVOK Analysis and Machine Learning for Predicting Chaotic Time Series.
    Yang J; Zhao J; Song J; Wu J; Zhao C; Leng H
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting Nonlinear Dynamics from Psychological and Behavioral Time Series Through HAVOK Analysis.
    Moulder RG; Martynova E; Boker SM
    Multivariate Behav Res; 2023; 58(2):441-465. PubMed ID: 35001769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalizing Koopman Theory to Allow for Inputs and Control.
    Proctory JL; Bruntonz SL; Kutzx JN
    SIAM J Appl Dyn Syst; 2018; 17(1):909-930. PubMed ID: 33584153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eigenvalues of autocovariance matrix: A practical method to identify the Koopman eigenfrequencies.
    Zhen Y; Chapron B; Mémin E; Peng L
    Phys Rev E; 2022 Mar; 105(3-1):034205. PubMed ID: 35428119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for universal linear embeddings of nonlinear dynamics.
    Lusch B; Kutz JN; Brunton SL
    Nat Commun; 2018 Nov; 9(1):4950. PubMed ID: 30470743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subspace dynamic mode decomposition for stochastic Koopman analysis.
    Takeishi N; Kawahara Y; Yairi T
    Phys Rev E; 2017 Sep; 96(3-1):033310. PubMed ID: 29347032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Koopman operator and its approximations for systems with symmetries.
    Salova A; Emenheiser J; Rupe A; Crutchfield JP; D'Souza RM
    Chaos; 2019 Sep; 29(9):093128. PubMed ID: 31575142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables.
    Fujii K; Kawahara Y
    Neural Netw; 2019 Sep; 117():94-103. PubMed ID: 31132607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online real-time learning of dynamical systems from noisy streaming data.
    Sinha S; Nandanoori SP; Barajas-Solano DA
    Sci Rep; 2023 Dec; 13(1):22564. PubMed ID: 38110424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy contour exploration with potentiostatic kinematics.
    Waters MJ; Rondinelli JM
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34352742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended Dynamic Mode Decomposition with Invertible Dictionary Learning.
    Jin Y; Hou L; Zhong S
    Neural Netw; 2024 May; 173():106177. PubMed ID: 38382398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Koopman-Based MPC With Learned Dynamics: Hierarchical Neural Network Approach.
    Wang M; Lou X; Wu W; Cui B
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3630-3639. PubMed ID: 35969545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A linear dynamical perspective on epidemiology: interplay between early COVID-19 outbreak and human mobility.
    Mustavee S; Agarwal S; Enyioha C; Das S
    Nonlinear Dyn; 2022; 109(2):1233-1252. PubMed ID: 35540628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two methods to approximate the Koopman operator with a reservoir computer.
    Gulina M; Mauroy A
    Chaos; 2021 Feb; 31(2):023116. PubMed ID: 33653036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.