These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35153598)

  • 1. A growth model for water distribution networks with loops.
    Sugishita K; Abdel-Mottaleb N; Zhang Q; Masuda N
    Proc Math Phys Eng Sci; 2021 Nov; 477(2255):20210528. PubMed ID: 35153598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of graph and complex network theory in water distribution networks: Mathematical foundation, application and prospects.
    Yu X; Wu Y; Meng F; Zhou X; Liu S; Huang Y; Wu X
    Water Res; 2024 Apr; 253():121238. PubMed ID: 38350191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leak detection in real water distribution networks based on acoustic emission and machine learning.
    Fares A; Tijani IA; Rui Z; Zayed T
    Environ Technol; 2023 Nov; 44(25):3850-3866. PubMed ID: 35506881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vulnerability analysis of water distribution networks to accidental pipe burst.
    Wéber R; Huzsvár T; Hős C
    Water Res; 2020 Oct; 184():116178. PubMed ID: 32707306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the leak detection efficiency in water distribution networks using noise loggers.
    Tijani IA; Abdelmageed S; Fares A; Fan KH; Hu ZY; Zayed T
    Sci Total Environ; 2022 May; 821():153530. PubMed ID: 35104524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulically informed graph theoretic measure of link criticality for the resilience analysis of water distribution networks.
    Ulusoy AJ; Stoianov I; Chazerain A
    Appl Netw Sci; 2018; 3(1):31. PubMed ID: 30839751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using water quality parameters to prediction of the ion-based trihalomethane by an artificial neural network model.
    Babaei AA; Tahmasebi Birgani Y; Baboli Z; Maleki H; Ahmadi Angali K
    Environ Monit Assess; 2023 Jul; 195(8):917. PubMed ID: 37402828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic performance benchmarking for effective management of water distribution networks: An innovative composite index-based approach.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Ghosal PS
    J Environ Manage; 2021 Dec; 299():113603. PubMed ID: 34454199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Many-objective optimization model for the flexible design of water distribution networks.
    Marques J; Cunha M; Savić D
    J Environ Manage; 2018 Nov; 226():308-319. PubMed ID: 30125810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real time control of water distribution networks: A state-of-the-art review.
    Creaco E; Campisano A; Fontana N; Marini G; Page PR; Walski T
    Water Res; 2019 Sep; 161():517-530. PubMed ID: 31229732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling complexity in engineered infrastructure system: Water distribution network as an example.
    Zeng F; Li X; Li K
    Chaos; 2017 Feb; 27(2):023105. PubMed ID: 28249393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A risk-based soft sensor for failure rate monitoring in water distribution network via adaptive neuro-fuzzy interference systems.
    Gheibi M; Moezzi R; Taghavian H; Wacławek S; Emrani N; Mohtasham M; Khaleghiabbasabadi M; Koci J; Yeap CSY; Cyrus J
    Sci Rep; 2023 Jul; 13(1):12200. PubMed ID: 37500665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of topological, empirical and optimization-based approaches for locating quality detection points in water distribution networks.
    Santonastaso GF; Di Nardo A; Creaco E; Musmarra D; Greco R
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):33844-33853. PubMed ID: 32851529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data.
    Li Z; Liu H; Zhang C; Fu G
    Water Res; 2024 Feb; 250():121018. PubMed ID: 38113592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generic patterns in the evolution of urban water networks: Evidence from a large Asian city.
    Krueger E; Klinkhamer C; Urich C; Zhan X; Rao PSC
    Phys Rev E; 2017 Mar; 95(3-1):032312. PubMed ID: 28415303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inherent directionality explains the lack of feedback loops in empirical networks.
    Domínguez-García V; Pigolotti S; Muñoz MA
    Sci Rep; 2014 Dec; 4():7497. PubMed ID: 25531727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation.
    Yoo DG; Chang DE; Song YH; Lee JH
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual graph characteristics of water distribution networks-how optimal are design solutions?
    Sitzenfrei R; Hajibabaei M; Hesarkazzazi S; Diao K
    Complex Intell Systems; 2023; 9(1):147-160. PubMed ID: 36844980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply.
    Zischg J; Rauch W; Sitzenfrei R
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network Community Detection Based on the Physarum-Inspired Computational Framework.
    Gao C; Liang M; Li X; Zhang Z; Wang Z; Zhou Z
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1916-1928. PubMed ID: 27992347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.