These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35153613)

  • 41. Bone Tissue Engineering via Carbon-Based Nanomaterials.
    Peng Z; Zhao T; Zhou Y; Li S; Li J; Leblanc RM
    Adv Healthc Mater; 2020 Mar; 9(5):e1901495. PubMed ID: 31976623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chitosan-based 3D-printed scaffolds for bone tissue engineering.
    Yadav LR; Chandran SV; Lavanya K; Selvamurugan N
    Int J Biol Macromol; 2021 Jul; 183():1925-1938. PubMed ID: 34097956
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds.
    Pires T; Santos J; Ruben RB; Gouveia BP; Castro APG; Fernandes PR
    J Biomech; 2021 Mar; 117():110263. PubMed ID: 33493715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.
    Song MJ; Dean D; Knothe Tate ML
    Biomaterials; 2013 Jul; 34(23):5766-75. PubMed ID: 23660249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational fluid dynamics modelling of human upper airway: A review.
    Faizal WM; Ghazali NNN; Khor CY; Badruddin IA; Zainon MZ; Yazid AA; Ibrahim NB; Razi RM
    Comput Methods Programs Biomed; 2020 Nov; 196():105627. PubMed ID: 32629222
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures.
    Bartnikowski M; Klein TJ; Melchels FP; Woodruff MA
    Biotechnol Bioeng; 2014 Jul; 111(7):1440-51. PubMed ID: 24473931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Current advances for bone regeneration based on tissue engineering strategies.
    Shi R; Huang Y; Ma C; Wu C; Tian W
    Front Med; 2019 Apr; 13(2):160-188. PubMed ID: 30047029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting.
    Ma S; Tang Q; Feng Q; Song J; Han X; Guo F
    J Mech Behav Biomed Mater; 2019 May; 93():158-169. PubMed ID: 30798182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scaffold Pore Geometry Guides Gene Regulation and Bone-like Tissue Formation in Dynamic Cultures.
    Rubert M; Vetsch JR; Lehtoviita I; Sommer M; Zhao F; Studart AR; Müller R; Hofmann S
    Tissue Eng Part A; 2021 Sep; 27(17-18):1192-1204. PubMed ID: 33297842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superparamagnetic core-shell electrospun scaffolds with sustained release of IONPs facilitating
    Hu S; Chen H; Zhou F; Liu J; Qian Y; Hu K; Yan J; Gu Z; Guo Z; Zhang F; Gu N
    J Mater Chem B; 2021 Nov; 9(43):8980-8993. PubMed ID: 34494055
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluid flow-induced cell stimulation in bone tissue engineering changes due to interstitial tissue formation in vitro.
    Zhao F; van Rietbergen B; Ito K; Hofmann S
    Int J Numer Method Biomed Eng; 2020 Jun; 36(6):e3342. PubMed ID: 32323478
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational Framework to Evaluate the Hydrodynamics of Cell Scaffold Geometries.
    Puleri DF; Roychowdhury S; Ames J; Randles A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2299-2302. PubMed ID: 33018467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chitosan based biocomposite scaffolds for bone tissue engineering.
    Saravanan S; Leena RS; Selvamurugan N
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1354-1365. PubMed ID: 26845481
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design optimization of scaffold microstructures using wall shear stress criterion towards regulated flow-induced erosion.
    Chen Y; Schellekens M; Zhou S; Cadman J; Li W; Appleyard R; Li Q
    J Biomech Eng; 2011 Aug; 133(8):081008. PubMed ID: 21950901
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A time-dependent mechanobiology-based topology optimization to enhance bone growth in tissue scaffolds.
    Wu C; Fang J; Entezari A; Sun G; Swain MV; Xu Y; Steven GP; Li Q
    J Biomech; 2021 Mar; 117():110233. PubMed ID: 33601086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.
    Liu Y; Chan JK; Teoh SH
    J Tissue Eng Regen Med; 2015 Feb; 9(2):85-105. PubMed ID: 23166000
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The inter-sample structural variability of regular tissue-engineered scaffolds significantly affects the micromechanical local cell environment.
    Campos Marin A; Lacroix D
    Interface Focus; 2015 Apr; 5(2):20140097. PubMed ID: 25844157
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth.
    Deng F; Liu L; Li Z; Liu J
    J Biol Eng; 2021 Jan; 15(1):4. PubMed ID: 33478505
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational simulations predict a key role for oscillatory fluid shear stress in de novo valvular tissue formation.
    Salinas M; Ramaswamy S
    J Biomech; 2014 Nov; 47(14):3517-23. PubMed ID: 25262874
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational fluid dynamics applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-concept.
    Gogas BD; Yang B; Passerini T; Veneziani A; Piccinelli M; Esposito G; Rasoul-Arzrumly E; Awad M; Mekonnen G; Hung OY; Holloway B; McDaniel M; Giddens D; King SB; Samady H
    Glob Cardiol Sci Pract; 2014; 2014(4):428-36. PubMed ID: 25780796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.