BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35153652)

  • 1. A Compact Two-Loudspeaker Virtual Sound Reproduction System for Clinical Testing of Spatial Hearing With Hearing-Assistive Devices.
    Hamdan EC; Fletcher MD
    Front Neurosci; 2021; 15():725127. PubMed ID: 35153652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A sound reproduction system using wave field synthesis to simulate everyday listening conditions].
    Weißgerber T
    HNO; 2019 Apr; 67(4):265-271. PubMed ID: 30859252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Resolution of Late Reverberation in Virtual Acoustic Environments.
    Kirsch C; Poppitz J; Wendt T; van de Par S; Ewert SD
    Trends Hear; 2021; 25():23312165211054924. PubMed ID: 34935544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Spatial Hearing Using a Dual-Task Approach in a Virtual-Acoustics Environment.
    Salorio-Corbetto M; Williges B; Lamping W; Picinali L; Vickers D
    Front Neurosci; 2022; 16():787153. PubMed ID: 35350560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Cochlear Implant Performance in the Wind Through Spectral Masking Release: A Multi-microphone and Multichannel Strategy.
    Chung K
    Ear Hear; 2020; 41(2):420-432. PubMed ID: 31425361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound localization in noise by normal-hearing listeners and cochlear implant users.
    Kerber S; Seeber BU
    Ear Hear; 2012; 33(4):445-57. PubMed ID: 22588270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise.
    Aronoff JM; Freed DJ; Fisher LM; Pal I; Soli SD
    Ear Hear; 2011; 32(4):468-84. PubMed ID: 21412155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of virtual sound sources with bilateral hearing aids in realistic acoustical scenes.
    Mueller MF; Kegel A; Schimmel SM; Dillier N; Hofbauer M
    J Acoust Soc Am; 2012 Jun; 131(6):4732-42. PubMed ID: 22712946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results.
    Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W
    Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective analysis of ambisonics for hearing aid applications: Effect of listener's head, room reverberation, and directional microphones.
    Oreinos C; Buchholz JM
    J Acoust Soc Am; 2015 Jun; 137(6):3447-65. PubMed ID: 26093433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MYRiAD: a multi-array room acoustic database.
    Dietzen T; Ali R; Taseska M; van Waterschoot T
    EURASIP J Audio Speech Music Process; 2023; 2023(1):17. PubMed ID: 37124321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating long-term effects of cochlear implantation in single-sided deafness: a best practice model for longitudinal assessment of spatial hearing abilities and tinnitus handicap.
    Gartrell BC; Jones HG; Kan A; Buhr-Lawler M; Gubbels SP; Litovsky RY
    Otol Neurotol; 2014 Oct; 35(9):1525-32. PubMed ID: 25158615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Microphone Configuration and Sound Source Location on Speech Recognition for Adult Cochlear Implant Users with Current-Generation Sound Processors.
    Dwyer RT; Roberts J; Gifford RH
    J Am Acad Audiol; 2020 Sep; 31(8):578-589. PubMed ID: 32340055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Acoustic Scenarios in Multichannel Loudspeaker Systems for Hearing Aid Evaluation.
    Grimm G; Kollmeier B; Hohmann V
    J Am Acad Audiol; 2016 Jul; 27(7):557-66. PubMed ID: 27406662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound localization skills in children who use bilateral cochlear implants and in children with normal acoustic hearing.
    Grieco-Calub TM; Litovsky RY
    Ear Hear; 2010 Oct; 31(5):645-56. PubMed ID: 20592615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Utility of a Compact Loudspeaker Array for Audiometric Testing.
    Zurek PM; Freyman RL; Najem F
    Am J Audiol; 2024 Apr; ():1-16. PubMed ID: 38668699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic Environment Audiometric Booth: Development and Clinical Validation.
    Vigliano M; Huarte A; Borro D; Lasarte U; Manrique Rodriguez MJ
    Audiol Neurootol; 2021; 26(5):317-326. PubMed ID: 33631766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Better speech perception in noise with an assistive multimicrophone array for hearing AIDS.
    Luts H; Maj JB; Soede W; Wouters J
    Ear Hear; 2004 Oct; 25(5):411-20. PubMed ID: 15599189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory localization abilities in bilateral cochlear implant recipients.
    Verschuur CA; Lutman ME; Ramsden R; Greenham P; O'Driscoll M
    Otol Neurotol; 2005 Sep; 26(5):965-71. PubMed ID: 16151344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.