These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35154308)
1. Intelligent Detection and Analysis of Polycyclic Aromatic Hydrocarbons Based on Surface-Enhanced Raman Scattering Spectroscopy. Zhang Q; Chen B; Wahid F; Feng W; Chen X Comput Intell Neurosci; 2022; 2022():8330702. PubMed ID: 35154308 [TBL] [Abstract][Full Text] [Related]
2. Halogen ion-modified silver nanoparticles for ultrasensitive surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Wang D; Zhu J; Hui B; Gong Z; Fan M Luminescence; 2022 Sep; 37(9):1541-1546. PubMed ID: 35816184 [TBL] [Abstract][Full Text] [Related]
3. Analysis of polycyclic aromatic hydrocarbons in water with gold nanoparticles decorated hydrophobic porous polymer as surface-enhanced Raman spectroscopy substrate. Wang X; Hao W; Zhang H; Pan Y; Kang Y; Zhang X; Zou M; Tong P; Du Y Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():214-21. PubMed ID: 25561300 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in water by surface-enhanced Raman spectroscopy (SERS) combined with Random Forest. Guo M; Li M; Fu H; Zhang Y; Chen T; Tang H; Zhang T; Li H Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122057. PubMed ID: 36332395 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous and rapid determination of polycyclic aromatic hydrocarbons by facile and green synthesis of silver nanoparticles as effective SERS substrate. Li M; Yu H; Cheng Y; Guo Y; Yao W; Xie Y Ecotoxicol Environ Saf; 2020 Sep; 200():110780. PubMed ID: 32470683 [TBL] [Abstract][Full Text] [Related]
6. Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Wang X; Xu Q; Hu X; Han F; Zhu C Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117783. PubMed ID: 31753660 [TBL] [Abstract][Full Text] [Related]
8. Surface enhanced Raman spectroscopy hyphenated with surface microextraction for in-situ detection of polycyclic aromatic hydrocarbons on food contact materials. Zhang M; Zhang X; Shi YE; Liu Z; Zhan J Talanta; 2016 Sep; 158():322-329. PubMed ID: 27343612 [TBL] [Abstract][Full Text] [Related]
9. Ultra-trace and quantitative SERS detection of polycyclic aromatic hydrocarbons based on Au nanoscale convex polyhedrons with embedded probe molecules. Yan X; Zhao H; Song H; Ma J; Shi X Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121566. PubMed ID: 35841855 [TBL] [Abstract][Full Text] [Related]
11. C18-modified metal-colloid substrates for surface-enhanced Raman detection of trace-level polycyclic aromatic hydrocarbons in aqueous solution. Olson LG; Uibel RH; Harris JM Appl Spectrosc; 2004 Dec; 58(12):1394-400. PubMed ID: 15606950 [TBL] [Abstract][Full Text] [Related]
12. High-Sensitivity Surface-Enhanced Raman Scattering (SERS) Substrate Based on a Gold Colloid Solution with a pH Change for Detection of Trace-Level Polycyclic Aromatic Hydrocarbons in Aqueous Solution. Shi X; Liu S; Han X; Ma J; Jiang Y; Yu G Appl Spectrosc; 2015 May; 69(5):574-9. PubMed ID: 25909769 [TBL] [Abstract][Full Text] [Related]
13. The use of surface-enhanced Raman scattering (SERS) for detection of PAHs in the Gulf of Gdańsk (Baltic Sea). Pfannkuche J; Lubecki L; Schmidt H; Kowalewska G; Kronfeldt HD Mar Pollut Bull; 2012 Mar; 64(3):614-26. PubMed ID: 22248648 [TBL] [Abstract][Full Text] [Related]
14. Surface enhanced Raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network. Bao L; Sheng P; Li J; Wu S; Cai Q; Yao S Analyst; 2012 Sep; 137(17):4010-5. PubMed ID: 22783547 [TBL] [Abstract][Full Text] [Related]
16. Multicomponent direct detection of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy using silver nanoparticles functionalized with the viologen host lucigenin. López-Tocón I; Otero JC; Arenas JF; Garcia-Ramos JV; Sanchez-Cortes S Anal Chem; 2011 Apr; 83(7):2518-25. PubMed ID: 21391577 [TBL] [Abstract][Full Text] [Related]
17. Organometallic nanoprobe to enhance optical response on the polycyclic aromatic hydrocarbon benzo[a]pyrene immunoassay using SERS technology. Dribek M; Rinnert E; Colas F; Crassous MP; Thioune N; David C; de la Chapelle M; Compère C Environ Sci Pollut Res Int; 2017 Dec; 24(35):27070-27076. PubMed ID: 25109469 [TBL] [Abstract][Full Text] [Related]
18. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized ag nanoparticles by surface-enhanced Raman scattering. Guerrini L; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S Anal Chem; 2009 Feb; 81(3):953-60. PubMed ID: 19127991 [TBL] [Abstract][Full Text] [Related]
19. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Xie Y; Wang X; Han X; Xue X; Ji W; Qi Z; Liu J; Zhao B; Ozaki Y Analyst; 2010 Jun; 135(6):1389-94. PubMed ID: 20405060 [TBL] [Abstract][Full Text] [Related]
20. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons. Lipińska A; Wyszkowska J; Kucharski J Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]