BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35154554)

  • 1. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles.
    Ozcelik A; Aslan Z
    Biomicrofluidics; 2022 Jan; 16(1):014103. PubMed ID: 35154554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A practical microfluidic pump enabled by acoustofluidics and 3D printing.
    Ozcelik A; Aslan Z
    Microfluid Nanofluidics; 2021; 25(1):5. PubMed ID: 33424526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lotus shaped acoustofluidic mixer: High throughput homogenisation of liquids in 2 ms using hydrodynamically coupled resonators.
    Pourabed A; Brenker J; Younas T; He L; Alan T
    Ultrason Sonochem; 2022 Feb; 83():105936. PubMed ID: 35144192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An acoustofluidic device for efficient mixing over a wide range of flow rates.
    Bachman H; Chen C; Rufo J; Zhao S; Yang S; Tian Z; Nama N; Huang PH; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1238-1248. PubMed ID: 32104816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of tunable, high-molecular-weight polymeric nanoparticles
    Zhao S; Huang PH; Zhang H; Rich J; Bachman H; Ye J; Zhang W; Chen C; Xie Z; Tian Z; Kang P; Fu H; Huang TJ
    Lab Chip; 2021 Jun; 21(12):2453-2463. PubMed ID: 33978043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison.
    Yang CH; Huang KS; Grumezescu AM; Wang CY; Tzeng SC; Chen SY; Lin YH; Lin YS
    Electrophoresis; 2014 Feb; 35(2-3):316-22. PubMed ID: 23857679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond Laser Micromachining of the Mask for Acoustofluidic Device Preparation.
    Wang Y; Qian J
    ACS Omega; 2023 Feb; 8(8):7838-7844. PubMed ID: 36873004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enriching Nanoparticles via Acoustofluidics.
    Mao Z; Li P; Wu M; Bachman H; Mesyngier N; Guo X; Liu S; Costanzo F; Huang TJ
    ACS Nano; 2017 Jan; 11(1):603-612. PubMed ID: 28068078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow.
    Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J
    Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform.
    Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y
    Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of bulk acoustofluidic devices driven by thin-film transducers and whole-system resonance modes.
    Steckel AG; Bruus H
    J Acoust Soc Am; 2021 Jul; 150(1):634. PubMed ID: 34340467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open source acoustofluidics.
    Bachman H; Fu H; Huang PH; Tian Z; Embry-Seckler J; Rufo J; Xie Z; Hartman JH; Zhao S; Yang S; Meyer JN; Huang TJ
    Lab Chip; 2019 Jul; 19(14):2404-2414. PubMed ID: 31240285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles.
    Tao J; Chow SF; Zheng Y
    Acta Pharm Sin B; 2019 Jan; 9(1):4-18. PubMed ID: 30766774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.