These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35154554)

  • 41. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
    Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A
    Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A microfluidic finger-actuated blood lysate preparation device enabled by rapid acoustofluidic mixing.
    Haque ME; Conde AJ; MacPherson WN; Knight SR; Carter RM; Kersaudy-Kerhoas M
    Lab Chip; 2022 Dec; 23(1):62-71. PubMed ID: 36477089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acoustofluidic actuation of in situ fabricated microrotors.
    Kaynak M; Ozcelik A; Nama N; Nourhani A; Lammert PE; Crespi VH; Huang TJ
    Lab Chip; 2016 Sep; 16(18):3532-7. PubMed ID: 27466140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical study of the coupling layer between transducer and chip in acoustofluidic devices.
    Bodé WN; Bruus H
    J Acoust Soc Am; 2021 May; 149(5):3096. PubMed ID: 34241126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics.
    Damiati SA; Rossi D; Joensson HN; Damiati S
    Sci Rep; 2020 Nov; 10(1):19517. PubMed ID: 33177577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication and characterization of controlled release poly(D,L-lactide-co-glycolide) millirods.
    Qian F; Szymanski A; Gao J
    J Biomed Mater Res; 2001 Jun; 55(4):512-22. PubMed ID: 11288079
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrating microfluidics and biosensing on a single flexible acoustic device using hybrid modes.
    Tao R; Reboud J; Torun H; McHale G; Dodd LE; Wu Q; Tao K; Yang X; Luo JT; Todryk S; Fu Y
    Lab Chip; 2020 Mar; 20(5):1002-1011. PubMed ID: 32026889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method.
    Taheri RA; Goodarzi V; Allahverdi A
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31744080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis.
    Niculescu AG; Mihaiescu DE; Grumezescu AM
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-frequency flexural wave based microparticle manipulation.
    Bachman H; Gu Y; Rufo J; Yang S; Tian Z; Huang PH; Yu L; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1281-1289. PubMed ID: 32154525
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A touch-and-go lipid wrapping technique in microfluidic channels for rapid fabrication of multifunctional envelope-type gene delivery nanodevices.
    Kitazoe K; Wang J; Kaji N; Okamoto Y; Tokeshi M; Kogure K; Harashima H; Baba Y
    Lab Chip; 2011 Oct; 11(19):3256-62. PubMed ID: 21829858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An enhanced tilted-angle acoustic tweezer for mechanical phenotyping of cancer cells.
    Wang H; Boardman J; Zhang X; Sun C; Cai M; Wei J; Dong Z; Feng M; Liang D; Hu S; Qian Y; Dong S; Fu Y; Torun H; Clayton A; Wu Z; Xie Z; Yang X
    Anal Chim Acta; 2023 May; 1255():341120. PubMed ID: 37032048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-step enzyme kinetics measurement in 3D printed microfluidics devices based on a high-performance single vibrating sharp-tip mixer.
    Li X; He Z; Li C; Li P
    Anal Chim Acta; 2021 Aug; 1172():338677. PubMed ID: 34119024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrafast star-shaped acoustic micromixer for high throughput nanoparticle synthesis.
    An Le NH; Deng H; Devendran C; Akhtar N; Ma X; Pouton C; Chan HK; Neild A; Alan T
    Lab Chip; 2020 Feb; 20(3):582-591. PubMed ID: 31898701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of bulk and microfluidics methods for the formulation of poly-lactic-
    Streck S; Neumann H; Nielsen HM; Rades T; McDowell A
    Int J Pharm X; 2019 Dec; 1():100030. PubMed ID: 31517295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.
    Othman R; Vladisavljević GT; Thomas NL; Nagy ZK
    Colloids Surf B Biointerfaces; 2016 May; 141():187-195. PubMed ID: 26852102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.