BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 35154565)

  • 1. Effects of Metal Oxide Nanoparticles in Zebrafish.
    d'Amora M; Schmidt TJN; Konstantinidou S; Raffa V; De Angelis F; Tantussi F
    Oxid Med Cell Longev; 2022; 2022():3313016. PubMed ID: 35154565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats.
    Mukherjee K; Acharya K
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):175-186. PubMed ID: 29549419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both?
    Wang D; Lin Z; Wang T; Yao Z; Qin M; Zheng S; Lu W
    J Hazard Mater; 2016 May; 308():328-34. PubMed ID: 26852208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment.
    Balmuri SR; Selvaraj U; Kumar VV; Anthony SP; Tsatsakis AM; Golokhvast KS; Raman T
    Environ Res; 2017 Jan; 152():141-149. PubMed ID: 27771568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of intestinal nitric oxide in embryonic zebrafish exposed to metal oxide nanoparticles.
    Ozel RE; Alkasir RS; Ray K; Wallace KN; Andreescu S
    Small; 2013 Dec; 9(24):4250-61. PubMed ID: 23873807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines.
    Karlsson HL; Gliga AR; Calléja FM; Gonçalves CS; Wallinder IO; Vrieling H; Fadeel B; Hendriks G
    Part Fibre Toxicol; 2014 Sep; 11():41. PubMed ID: 25179117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos.
    Noventa S; Hacker C; Rowe D; Elgy C; Galloway T
    Nanotoxicology; 2018 Feb; 12(1):63-78. PubMed ID: 29262761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined exposure to nanoplastics and metal oxide nanoparticles inhibits efflux pumps and causes oxidative stress in zebrafish embryos.
    Bhagat J; Zang L; Kaneco S; Nishimura N; Shimada Y
    Sci Total Environ; 2022 Aug; 835():155436. PubMed ID: 35461948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions.
    Shaw BJ; Handy RD
    Environ Int; 2011 Aug; 37(6):1083-97. PubMed ID: 21474182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the effects of MnO
    Ashrafi Hafez A; Naserzadeh P; Mortazavian AM; Mehravi B; Ashtari K; Seydi E; Salimi A
    Toxicol Mech Methods; 2019 Feb; 29(2):86-94. PubMed ID: 30132356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.
    Li K; Chen Y; Zhang W; Pu Z; Jiang L; Chen Y
    Chem Res Toxicol; 2012 Aug; 25(8):1675-81. PubMed ID: 22693953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicological study of metal and metal oxide nanoparticles in zebrafish.
    Bai C; Tang M
    J Appl Toxicol; 2020 Jan; 40(1):37-63. PubMed ID: 31884684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes.
    Bi J; Mo C; Li S; Huang M; Lin Y; Yuan P; Liu Z; Jia B; Xu S
    Biomater Sci; 2023 Jun; 11(12):4151-4183. PubMed ID: 37161951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity comparison of nanopolystyrene with three metal oxide nanoparticles in nematode Caenorhabditis elegans.
    Li D; Ji J; Yuan Y; Wang D
    Chemosphere; 2020 Apr; 245():125625. PubMed ID: 31855754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungi from metal-polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles.
    Pradhan A; Seena S; Schlosser D; Gerth K; Helm S; Dobritzsch M; Krauss GJ; Dobritzsch D; Pascoal C; Cássio F
    Environ Toxicol Chem; 2015 Apr; 34(4):923-30. PubMed ID: 25565283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review.
    Li J; Wang C; Yue L; Chen F; Cao X; Wang Z
    Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and apotosis to zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate (PFOS) and ZnO nanoparticles.
    Du J; Cai J; Wang S; You H
    Int J Occup Med Environ Health; 2017 Mar; 30(2):213-229. PubMed ID: 28366952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation.
    Cai X; Lee A; Ji Z; Huang C; Chang CH; Wang X; Liao YP; Xia T; Li R
    Part Fibre Toxicol; 2017 Apr; 14(1):13. PubMed ID: 28431555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal(loid) oxide (Al
    Sousa CA; Soares HMVM; Soares EV
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6257-6269. PubMed ID: 31152204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.