BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35154862)

  • 1. Deep convolutional neural network-based scatterer density and resolution estimators in optical coherence tomography.
    Seesan T; Abd El-Sadek I; Mukherjee P; Zhu L; Oikawa K; Miyazawa A; Shen LT; Matsusaka S; Buranasiri P; Makita S; Yasuno Y
    Biomed Opt Express; 2022 Jan; 13(1):168-183. PubMed ID: 35154862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical-coherence-tomography-based deep-learning scatterer-density estimator using physically accurate noise model.
    Seesan T; Mukherjee P; Abd El-Sadek I; Lim Y; Zhu L; Makita S; Yasuno Y
    Biomed Opt Express; 2024 May; 15(5):2832-2848. PubMed ID: 38855681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Scatterer Number Density Segmentation of Ultrasound Images.
    Tehrani AKZ; Rosado-Mendez IM; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1169-1180. PubMed ID: 35044911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Scatterer Density Classification Using Convolutional Neural Networks and Patch Statistics.
    Tehrani AKZ; Amiri M; Rosado-Mendez IM; Hall TJ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2697-2706. PubMed ID: 33900913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
    Liu W; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):340-52. PubMed ID: 20178900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-D H-Scan Ultrasound Imaging and Use of a Convolutional Neural Network for Scatterer Size Estimation.
    Tai H; Khairalseed M; Hoyt K
    Ultrasound Med Biol; 2020 Oct; 46(10):2810-2818. PubMed ID: 32653207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Network for Scatterer Distribution Estimation for Ultrasound Image Simulation.
    Zhang L; Vishnevskiy V; Goksel O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2553-2564. PubMed ID: 32822295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral image reconstruction of optical coherence tomography using one-dimensional deep deconvolution network.
    Lee M; Bang H; Lee E; Won Y; Kim K; Park S; Yoo H; Lee S
    Lasers Surg Med; 2022 Aug; 54(6):895-906. PubMed ID: 35366377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pilot Study on Scatterer Density Classification of Ultrasound Images Using Deep Neural Networks.
    Tehrani AKZ; Amiri M; Rosado-Mendez IM; Hall TJ; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2059-2062. PubMed ID: 33018410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of Ultrasound Images based on Scatterer Density using U-Net.
    Amiri M; Tehrani AKZ; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2063-2066. PubMed ID: 33018411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean scatterer spacing estimation using multi-taper coherence.
    Rubert N; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1061-73. PubMed ID: 25004470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Deep convolutional neural networks-based scatterer density and resolution estimators in optical coherence tomography: erratum.
    Seesan T; Abd El-Sadek I; Mukherjee P; Zhu L; Oikawa K; Miyazawa A; Shen LT; Matsusaka S; Buranasiri P; Makita S; Yasuno Y
    Biomed Opt Express; 2024 Mar; 15(3):1694-1696. PubMed ID: 38495720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography.
    Wang X; Pogue BW; Jiang S; Dehghani H; Song X; Srinivasan S; Brooksby BA; Paulsen KD; Kogel C; Poplack SP; Wells WA
    J Biomed Opt; 2006; 11(4):041106. PubMed ID: 16965134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional imaging of dye concentration in tissue phantoms by spectroscopic optical coherence tomography.
    Støren T; Røyset A; Svaasand LO; Lindmo T
    J Biomed Opt; 2005; 10(2):024037. PubMed ID: 15910110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial resolution and signal-to-noise ratio in deep-tissue imaging with 1.7-μm high-resolution optical coherence tomography with an ultrabroadband laser source.
    Kawagoe H; Yamanaka M; Nishizawa N
    J Biomed Opt; 2017 Aug; 22(8):85002. PubMed ID: 28777837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scatterer number density considerations in reference phantom-based attenuation estimation.
    Rubert N; Varghese T
    Ultrasound Med Biol; 2014 Jul; 40(7):1680-96. PubMed ID: 24726800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):259-265. PubMed ID: 29159541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast- and noise-dependent spatial resolution measurement for deep convolutional neural network-based noise reduction in CT using patient data.
    Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 37197705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.