These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35154872)

  • 21. Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy.
    Wu Y; Li X
    Biomed Opt Express; 2010 Oct; 1(4):1234-1243. PubMed ID: 21258545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector.
    Wu Y; Xi J; Cobb MJ; Li X
    Opt Lett; 2009 Apr; 34(7):953-5. PubMed ID: 19340182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A white light confocal microscope for spectrally resolved multidimensional imaging.
    Frank JH; Elder AD; Swartling J; Venkitaraman AR; Jeyasekharan AD; Kaminski CF
    J Microsc; 2007 Sep; 227(Pt 3):203-15. PubMed ID: 17760615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Handheld endomicroscope using a fiber-optic harmonograph enables real-time and in vivo confocal imaging of living cell morphology and capillary perfusion.
    Hwang K; Seo YH; Kim DY; Ahn J; Lee S; Han KH; Lee KH; Jon S; Kim P; Yu KE; Kim H; Kang SH; Jeong KH
    Microsyst Nanoeng; 2020; 6():72. PubMed ID: 34567682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extending the depth of focus of fiber-optic optical coherence tomography using a chromatic dual-focus design.
    Li J; Luo Y; Wang X; Wang N; Bo E; Chen S; Chen S; Chen S; Tsai MT; Liu L
    Appl Opt; 2018 Jul; 57(21):6040-6046. PubMed ID: 30118032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromatic confocal microscopy using supercontinuum light.
    Shi K; Li P; Yin S; Liu Z
    Opt Express; 2004 May; 12(10):2096-101. PubMed ID: 19475044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MicroLED chromatic confocal microscope.
    Li S; Song B; Peterson T; Hsu J; Liang R
    Opt Lett; 2021 Jun; 46(11):2722-2725. PubMed ID: 34061097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MEMS-BASED 3D CONFOCAL SCANNING MICROENDOSCOPE USING MEMS SCANNERS FOR BOTH LATERAL AND AXIAL SCAN.
    Liu L; Wang E; Zhang X; Liang W; Li X; Xie H
    Sens Actuators A Phys; 2014 Aug; 215():89-95. PubMed ID: 25013304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fiber bundle shifting endomicroscopy for high-resolution imaging.
    Vyas K; Hughes M; Rosa BG; Yang GZ
    Biomed Opt Express; 2018 Oct; 9(10):4649-4664. PubMed ID: 30319893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking.
    Hughes M; Yang GZ
    Biomed Opt Express; 2015 Apr; 6(4):1241-52. PubMed ID: 25909008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses.
    Franchini A
    J Cataract Refract Surg; 2007 Mar; 33(3):497-509. PubMed ID: 17321402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo.
    Sung KB; Richards-Kortum R; Follen M; Malpica A; Liang C; Descour M
    Opt Express; 2003 Dec; 11(24):3171-81. PubMed ID: 19471442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective.
    Kyrish M; Dobbs J; Jain S; Wang X; Yu D; Richards-Kortum R; Tkaczyk TS
    J Biomed Opt; 2013 Sep; 18(9):096003. PubMed ID: 24002190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reflectance confocal endomicroscope with optical axial scanning for in vivo imaging of the oral mucosa.
    Jabbour JM; Bentley JL; Malik BH; Nemechek J; Warda J; Cuenca R; Cheng S; Jo JA; Maitland KC
    Biomed Opt Express; 2014 Nov; 5(11):3781-91. PubMed ID: 25426310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Image scanning lensless fiber-bundle endomicroscopy.
    Weinberg G; Weiss U; Katz O
    Opt Express; 2023 Oct; 31(22):37050-37057. PubMed ID: 38017842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging of goblet cells as a marker for intestinal metaplasia of the stomach by one-photon and two-photon fluorescence endomicroscopy.
    Bao H; Boussioutas A; Reynolds J; Russell S; Gu M
    J Biomed Opt; 2009; 14(6):064031. PubMed ID: 20059269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatic confocal microscopy with a novel wavelength detection method using transmittance.
    Kim T; Kim SH; Do D; Yoo H; Gweon D
    Opt Express; 2013 Mar; 21(5):6286-94. PubMed ID: 23482197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues.
    Sung KB; Liang C; Descour M; Collier T; Follen M; Richards-Kortum R
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1168-72. PubMed ID: 12374341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional image sensing by chromatic confocal microscopy.
    Tiziani HJ; Uhde HM
    Appl Opt; 1994 Apr; 33(10):1838-43. PubMed ID: 20885516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.