These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3515508)

  • 1. The antimicrobial activities of trimethoprim and sulfonamides.
    Burman LG
    Scand J Infect Dis; 1986; 18(1):3-13. PubMed ID: 3515508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of the sulfonamide component for the clinical efficacy of trimethoprim-sulfonamide combinations.
    Burman LG
    Scand J Infect Dis; 1986; 18(2):89-99. PubMed ID: 3518051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory surveillance of synergy between and resistance to trimethoprim and sulfonamides.
    O'Brien TF; Acar JF; Altmann G; Blackburn BO; Chao L; Courtieu AL; Evans DA; Guzman M; Holmes M; Jacobs MR; Kent RL; Norton RA; Koornhof HJ; Medeiros AA; Pasculle AW; Surgalla MJ; Williams JD
    Rev Infect Dis; 1982; 4(2):351-7. PubMed ID: 7111960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro susceptibility of equine Salmonella strains to trimethoprim and sulfonamide alone or in combination.
    van Duijkeren E; van Klingeren B; Vulto AG; Sloet van Oldruitenborgh-Oosterbaan MM; Breukink HJ; van Miert AS
    Am J Vet Res; 1994 Oct; 55(10):1386-90. PubMed ID: 7998695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance to trimethoprim among urinary tract isolates in the United Kingdom.
    Towner KJ
    Rev Infect Dis; 1982; 4(2):456-60. PubMed ID: 7111964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neisseriaceae, a group of bacteria with dihydrofolate reductases, moderately susceptible to trimethoprim.
    Then RL
    Zentralbl Bakteriol Orig A; 1979 Dec; 245(4):450-8. PubMed ID: 44939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimethoprim-resistant Enterobacteriaceae in urinary tract infection.
    Wong CK; Harding GK; Ronald AR; Hoban S
    Can Med Assoc J; 1975 Jun; 112(13 Spec No):54-8. PubMed ID: 1093652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of sulphonamide-trimethoprim combinations for urinary tract infections. Part I: Comparison of the antibacterial effect of sulphonamides alone and in combination with trimethoprim.
    Ekström B; Forsgren U; Ortengren B; Bergan T
    Infection; 1979; 7 Suppl 4():S359-66. PubMed ID: 389812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro additive effect of nitrofurantoin combined with trimethoprim-sulfamethoxazole against Serratia marcescens.
    Traub WH; Fukushima PI
    Chemotherapy; 1979; 25(3):140-6. PubMed ID: 378572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of rifampin and trimethoprim in vitro.
    Alvarez S; DeMaria A; Kulkarni R; Klein JO; McCabe WR
    Rev Infect Dis; 1982; 4(2):390-401. PubMed ID: 7111962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemiologic features of urinary infections due to enterobacteriaceae resistant to nalidixic acid and trimethoprim.
    Light RB; Ronald AR; Harding G; Fox L; Buckwold FJ
    Scand J Infect Dis; 1981; 13(3):195-202. PubMed ID: 7313574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity and interaction of trimethoprim and sulphamethoxazole against Escherichia coli.
    Greenwood D; O'Grady F
    J Clin Pathol; 1976 Feb; 29(2):162-6. PubMed ID: 777036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparative activity of sulfamethoxazole-trimethoprim (SMZ-TMP) on bacteria responsible for ORL infections].
    Joly B; Sirot D; Cluzel M; Chanal M; Bruneau D
    Pathol Biol (Paris); 1984 Jun; 32(6):689-92. PubMed ID: 6611536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of Pseudomonas aeruginosa to sulphonamides and trimethoprim and the activity of the combination trimethoprim: sulphamethoxazole.
    Grey D; Hamilton-Miller JM
    J Med Microbiol; 1977 Aug; 10(3):273-9. PubMed ID: 408490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trimethoprim/sulfonamide combinations in the horse: a review.
    Van Duijkeren E; Vulto AG; Van Miert AS
    J Vet Pharmacol Ther; 1994 Feb; 17(1):64-73. PubMed ID: 8196097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro efficacy of new antifolates against trimethoprim-resistant Bacillus anthracis.
    Barrow EW; Dreier J; Reinelt S; Bourne PC; Barrow WW
    Antimicrob Agents Chemother; 2007 Dec; 51(12):4447-52. PubMed ID: 17875993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of in vitro sensitivity testing methods of detecting sulphamethoxazole trimethoprim synergy. Correlation with mouse protection assay.
    Rawal BD; Cottis L
    Arzneimittelforschung; 1980; 30(7):1049-51. PubMed ID: 6998489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the minimum inhibitory, mutant prevention and minimum bactericidal concentrations of ciprofloxacin, levofloxacin and garenoxacin against enteric Gram-negative urinary tract infection pathogens.
    Hansen GT; Blondeau JM
    J Chemother; 2005 Oct; 17(5):484-92. PubMed ID: 16323436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiotic resistance in outpatient urinary isolates: final results from the North American Urinary Tract Infection Collaborative Alliance (NAUTICA).
    Zhanel GG; Hisanaga TL; Laing NM; DeCorby MR; Nichol KA; Palatnik LP; Johnson J; Noreddin A; Harding GK; Nicolle LE; Hoban DJ;
    Int J Antimicrob Agents; 2005 Nov; 26(5):380-8. PubMed ID: 16243229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimethoprim and methenamine hippurate. A new theoretical combination for the treatment of urinary tract infections.
    Räisänen S; Ylitalo P; Toponen A; Seppänen J
    Scand J Infect Dis; 1985; 17(2):211-8. PubMed ID: 3895402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.