These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Predicting Progression-Free Survival Using MRI-Based Radiomics for Patients With Nonmetastatic Nasopharyngeal Carcinoma. Shen H; Wang Y; Liu D; Lv R; Huang Y; Peng C; Jiang S; Wang Y; He Y; Lan X; Huang H; Sun J; Zhang J Front Oncol; 2020; 10():618. PubMed ID: 32477932 [No Abstract] [Full Text] [Related]
4. Differences in Radiomics Signatures Between Patients with Early and Advanced T-Stage Nasopharyngeal Carcinoma Facilitate Prognostication. Wu S; Li H; Dong A; Tian L; Ruan G; Liu L; Shao Y J Magn Reson Imaging; 2021 Sep; 54(3):854-865. PubMed ID: 33830573 [TBL] [Abstract][Full Text] [Related]
5. Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma. Gu B; Meng M; Xu M; Feng DD; Bi L; Kim J; Song S Eur J Nucl Med Mol Imaging; 2023 Nov; 50(13):3996-4009. PubMed ID: 37596343 [TBL] [Abstract][Full Text] [Related]
6. Predictive value of delta-radiomic features for prognosis of advanced non-small cell lung cancer patients undergoing immune checkpoint inhibitor therapy. Han X; Wang Y; Jia X; Zheng Y; Ding C; Zhang X; Zhang K; Cao Y; Li Y; Xia L; Zheng C; Huang J; Shi H Transl Lung Cancer Res; 2024 Jun; 13(6):1247-1263. PubMed ID: 38973966 [TBL] [Abstract][Full Text] [Related]
7. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Peng L; Hong X; Yuan Q; Lu L; Wang Q; Chen W Ann Nucl Med; 2021 Apr; 35(4):458-468. PubMed ID: 33543393 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Changes in Tumor Regression during Radiotherapy for Nasopharyngeal Carcinoma by Using the Computed Tomography-Based Radiomics. Yang Y; Wu J; Mai W; Li H Contrast Media Mol Imaging; 2022; 2022():3417480. PubMed ID: 36226269 [TBL] [Abstract][Full Text] [Related]
9. Prognostic and predictive value of radiomics features at MRI in nasopharyngeal carcinoma. Bao D; Zhao Y; Liu Z; Zhong H; Geng Y; Lin M; Li L; Zhao X; Luo D Discov Oncol; 2021; 12(1):63. PubMed ID: 34993528 [TBL] [Abstract][Full Text] [Related]
10. Utility of CT Radiomics and Delta Radiomics for Survival Evaluation in Locally Advanced Nasopharyngeal Carcinoma with Concurrent Chemoradiotherapy. Huang YC; Huang SM; Yeh JH; Chang TC; Tsan DL; Lin CY; Tu SJ Diagnostics (Basel); 2024 Apr; 14(9):. PubMed ID: 38732355 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of an MRI-based radiomic model for predicting overall survival in nasopharyngeal carcinoma patients with local residual tumors after intensity-modulated radiotherapy. Jiang S; Han L; Liang L; Long L BMC Med Imaging; 2022 Oct; 22(1):174. PubMed ID: 36195860 [TBL] [Abstract][Full Text] [Related]
12. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer. Yang B; Zhou L; Zhong J; Lv T; Li A; Ma L; Zhong J; Yin S; Huang L; Zhou C; Li X; Ge YQ; Tao X; Zhang L; Son Y; Lu G Respir Res; 2021 Jun; 22(1):189. PubMed ID: 34183009 [TBL] [Abstract][Full Text] [Related]
13. Prediction of 5-year progression-free survival in advanced nasopharyngeal carcinoma with pretreatment PET/CT using multi-modality deep learning-based radiomics. Gu B; Meng M; Bi L; Kim J; Feng DD; Song S Front Oncol; 2022; 12():899351. PubMed ID: 35965589 [TBL] [Abstract][Full Text] [Related]
14. Prognostic Value of Pre-Treatment CT Radiomics and Clinical Factors for the Overall Survival of Advanced (IIIB-IV) Lung Adenocarcinoma Patients. Hong D; Zhang L; Xu K; Wan X; Guo Y Front Oncol; 2021; 11():628982. PubMed ID: 34123786 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive integrated analysis of MR and DCE-MR radiomics models for prognostic prediction in nasopharyngeal carcinoma. Li H; Huang W; Wang S; Balasubramanian PS; Wu G; Fang M; Xie X; Zhang J; Dong D; Tian J; Chen F Vis Comput Ind Biomed Art; 2023 Dec; 6(1):23. PubMed ID: 38036750 [TBL] [Abstract][Full Text] [Related]
16. Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures. Cui Y; Li Z; Xiang M; Han D; Yin Y; Ma C Radiat Oncol; 2022 Dec; 17(1):212. PubMed ID: 36575480 [TBL] [Abstract][Full Text] [Related]
17. Integrative Scoring System for Survival Prediction in Patients With Locally Advanced Nasopharyngeal Carcinoma: A Retrospective Multicenter Study. Zhang B; Luo C; Zhang X; Hou J; Liu S; Gao M; Zhang L; Jin Z; Chen Q; Yu X; Zhang S JCO Clin Cancer Inform; 2023 Feb; 7():e2200015. PubMed ID: 36877918 [TBL] [Abstract][Full Text] [Related]
18. Establishment and Validation of a Novel MRI Radiomics Feature-Based Prognostic Model to Predict Distant Metastasis in Endemic Nasopharyngeal Carcinoma. Li HJ; Liu LZ; Huang Y; Jin YB; Chen XP; Luo W; Su JC; Chen K; Zhang J; Zhang GY Front Oncol; 2022; 12():794975. PubMed ID: 35402262 [TBL] [Abstract][Full Text] [Related]
19. Development of a Radiotherapy Localisation Computed Tomography-Based Radiomic Model for Predicting Survival in Patients With Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy Following Induction Chemotherapy. Li X; Chen H; Zhao F; Zheng Y; Pang H; Xiang L Cancer Control; 2022; 29():10732748221076820. PubMed ID: 35271403 [TBL] [Abstract][Full Text] [Related]
20. Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Qiu Q; Duan J; Duan Z; Meng X; Ma C; Zhu J; Lu J; Liu T; Yin Y Quant Imaging Med Surg; 2019 Mar; 9(3):453-464. PubMed ID: 31032192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]