BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35155399)

  • 1. CRISPR Interference Modules as Low-Burden Logic Inverters in Synthetic Circuits.
    Bellato M; Frusteri Chiacchiera A; Salibi E; Casanova M; De Marchi D; Castagliuolo I; Cusella De Angelis MG; Magni P; Pasotti L
    Front Bioeng Biotechnol; 2021; 9():743950. PubMed ID: 35155399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Model-Driven Analysis of Synthetic Circuits with the
    De Marchi D; Shaposhnikov R; Gobaa S; Pastorelli D; Batt G; Magni P; Pasotti L
    ACS Synth Biol; 2024 Mar; 13(3):763-780. PubMed ID: 38374729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. dCas9 regulator to neutralize competition in CRISPRi circuits.
    Huang HH; Bellato M; Qian Y; Cárdenas P; Pasotti L; Magni P; Del Vecchio D
    Nat Commun; 2021 Mar; 12(1):1692. PubMed ID: 33727557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback.
    Specht DA; Cortes LB; Lambert G
    ACS Synth Biol; 2022 Sep; 11(9):2927-2937. PubMed ID: 36017994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated Expression of sgRNAs Tunes CRISPRi in E. coli.
    Fontana J; Dong C; Ham JY; Zalatan JG; Carothers JM
    Biotechnol J; 2018 Sep; 13(9):e1800069. PubMed ID: 29635744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks.
    Nielsen AA; Voigt CA
    Mol Syst Biol; 2014 Nov; 10(11):763. PubMed ID: 25422271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/dCas9-Mediated Multiplex Gene Repression in Streptomyces.
    Zhao Y; Li L; Zheng G; Jiang W; Deng Z; Wang Z; Lu Y
    Biotechnol J; 2018 Sep; 13(9):e1800121. PubMed ID: 29862648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors.
    Replogle JM; Bonnar JL; Pogson AN; Liem CR; Maier NK; Ding Y; Russell BJ; Wang X; Leng K; Guna A; Norman TM; Pak RA; Ramos DM; Ward ME; Gilbert LA; Kampmann M; Weissman JS; Jost M
    Elife; 2022 Dec; 11():. PubMed ID: 36576240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Cell Characterization of a Synthetic Bacterial Clock with a Hybrid Feedback Loop Containing dCas9-sgRNA.
    Henningsen J; Schwarz-Schilling M; Leibl A; Gutiérrez JN; Sagredo S; Simmel FC
    ACS Synth Biol; 2020 Dec; 9(12):3377-3387. PubMed ID: 33231079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM
    Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive dCas9 binding as a mechanism for transcriptional control.
    Anderson DA; Voigt CA
    Mol Syst Biol; 2021 Nov; 17(11):e10512. PubMed ID: 34747560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalizing Cell-Free Systems with CRISPR-Associated Proteins: Application to RNA-Based Circuit Engineering.
    Lehr FX; Kuzembayeva A; Bailey ME; Kleindienst W; Kabisch J; Koeppl H
    ACS Synth Biol; 2021 Sep; 10(9):2138-2150. PubMed ID: 34383464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits.
    Lebar T; Jerala R
    ACS Synth Biol; 2016 Oct; 5(10):1050-1058. PubMed ID: 27344932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design.
    Zhang S; Voigt CA
    Nucleic Acids Res; 2018 Nov; 46(20):11115-11125. PubMed ID: 30289463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5.
    Brito LF; Schultenkämper K; Passaglia LMP; Wendisch VF
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):5095-5106. PubMed ID: 32274563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates.
    Gander MW; Vrana JD; Voje WE; Carothers JM; Klavins E
    Nat Commun; 2017 May; 8():15459. PubMed ID: 28541304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Improved CRISPR/dCas9 Interference Tool for Neuronal Gene Suppression.
    Duke CG; Bach SV; Revanna JS; Sultan FA; Southern NT; Davis MN; Carullo NVN; Bauman AJ; Phillips RA; Day JJ
    Front Genome Ed; 2020; 2():9. PubMed ID: 34713218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Cell Programming with Quorum Sensing-Controlled CRISPRi Circuit.
    Liu Y; Chen J; Crisante D; Jaramillo Lopez JM; Mahadevan R
    ACS Synth Biol; 2020 Jun; 9(6):1284-1291. PubMed ID: 32485106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.