BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35155399)

  • 21. Dynamic Cell Programming with Quorum Sensing-Controlled CRISPRi Circuit.
    Liu Y; Chen J; Crisante D; Jaramillo Lopez JM; Mahadevan R
    ACS Synth Biol; 2020 Jun; 9(6):1284-1291. PubMed ID: 32485106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences.
    Karlson CKS; Mohd-Noor SN; Nolte N; Tan BC
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Microbial Metabolic Rates Using CRISPR Interference With Expanded PAM Sequences.
    Kim B; Kim HJ; Lee SJ
    Front Microbiol; 2020; 11():282. PubMed ID: 32184769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated design and implementation of a NOR gate in Pseudomonas putida.
    Tas H; Grozinger L; Goñi-Moreno A; de Lorenzo V
    Synth Biol (Oxf); 2021; 6(1):ysab024. PubMed ID: 34712846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [CRISPR Interference in Regulation of Bacterial Gene Expression].
    Nadolinskaia NI; Goncharenko AV
    Mol Biol (Mosk); 2022; 56(6):892-899. PubMed ID: 36475476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic programs constructed from layered logic gates in single cells.
    Moon TS; Lou C; Tamsir A; Stanton BC; Voigt CA
    Nature; 2012 Nov; 491(7423):249-53. PubMed ID: 23041931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli.
    Sung LY; Wu MY; Lin MW; Hsu MN; Truong VA; Shen CC; Tu Y; Hwang KY; Tu AP; Chang YH; Hu YC
    Biotechnol Bioeng; 2019 May; 116(5):1066-1079. PubMed ID: 30636321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic memory circuits for stable cell reprogramming in plants.
    Lloyd JPB; Ly F; Gong P; Pflueger J; Swain T; Pflueger C; Fourie E; Khan MA; Kidd BN; Lister R
    Nat Biotechnol; 2022 Dec; 40(12):1862-1872. PubMed ID: 35788565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-input regulation and logic with T7 promoters in cells and cell-free systems.
    Iyer S; Karig DK; Norred SE; Simpson ML; Doktycz MJ
    PLoS One; 2013; 8(10):e78442. PubMed ID: 24194933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of CRISPR interference on strain development in biotechnology.
    Schultenkämper K; Brito LF; Wendisch VF
    Biotechnol Appl Biochem; 2020 Jan; 67(1):7-21. PubMed ID: 32064678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges.
    Li Y; Zhou LQ
    Bioessays; 2021 Sep; 43(9):e2100086. PubMed ID: 34327721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120.
    Higo A; Isu A; Fukaya Y; Ehira S; Hisabori T
    Plant Cell Physiol; 2018 Jan; 59(1):119-127. PubMed ID: 29112727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR technologies for stem cell engineering and regenerative medicine.
    Hsu MN; Chang YH; Truong VA; Lai PL; Nguyen TKN; Hu YC
    Biotechnol Adv; 2019 Dec; 37(8):107447. PubMed ID: 31513841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria.
    Call SN; Andrews LB
    Front Genome Ed; 2022; 4():892304. PubMed ID: 35813973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.