These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 35155440)
41. Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies. Bolormaa S; Pryce JE; Kemper KE; Hayes BJ; Zhang Y; Tier B; Barendse W; Reverter A; Goddard ME Genet Sel Evol; 2013 Oct; 45(1):43. PubMed ID: 24168700 [TBL] [Abstract][Full Text] [Related]
42. A genome-wide association study of seed protein and oil content in soybean. Hwang EY; Song Q; Jia G; Specht JE; Hyten DL; Costa J; Cregan PB BMC Genomics; 2014 Jan; 15():1. PubMed ID: 24382143 [TBL] [Abstract][Full Text] [Related]
43. ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types. Li J; Xue Y; Amin MT; Yang Y; Yang J; Zhang W; Yang W; Niu X; Zhang HY; Gong J Nucleic Acids Res; 2020 Jan; 48(D1):D956-D963. PubMed ID: 31410488 [TBL] [Abstract][Full Text] [Related]
44. Identification of genes and networks driving cardiovascular and metabolic phenotypes in a mouse F2 intercross. Derry JM; Zhong H; Molony C; MacNeil D; Guhathakurta D; Zhang B; Mudgett J; Small K; El Fertak L; Guimond A; Selloum M; Zhao W; Champy MF; Monassier L; Vogt T; Cully D; Kasarskis A; Schadt EE PLoS One; 2010 Dec; 5(12):e14319. PubMed ID: 21179467 [TBL] [Abstract][Full Text] [Related]
45. Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load×QTL interactions. Kromdijk J; Bertin N; Heuvelink E; Molenaar J; de Visser PH; Marcelis LF; Struik PC J Exp Bot; 2014 Jan; 65(1):11-22. PubMed ID: 24227339 [TBL] [Abstract][Full Text] [Related]
46. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics. Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509 [TBL] [Abstract][Full Text] [Related]
47. Network-based group variable selection for detecting expression quantitative trait loci (eQTL). Wang W; Zhang X BMC Bioinformatics; 2011 Jun; 12():269. PubMed ID: 21718480 [TBL] [Abstract][Full Text] [Related]
48. Complex-disease networks of trait-associated single-nucleotide polymorphisms (SNPs) unveiled by information theory. Li H; Lee Y; Chen JL; Rebman E; Li J; Lussier YA J Am Med Inform Assoc; 2012; 19(2):295-305. PubMed ID: 22278381 [TBL] [Abstract][Full Text] [Related]
49. Single Nucleotide Polymorphisms at a Distance from Aryl Hydrocarbon Receptor (AHR) Binding Sites Influence AHR Ligand-Dependent Gene Expression. Neavin DR; Lee JH; Liu D; Ye Z; Li H; Wang L; Ordog T; Weinshilboum RM Drug Metab Dispos; 2019 Sep; 47(9):983-994. PubMed ID: 31292129 [TBL] [Abstract][Full Text] [Related]
50. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle. Doran AG; Berry DP; Creevey CJ BMC Genomics; 2014 Oct; 15(1):837. PubMed ID: 25273628 [TBL] [Abstract][Full Text] [Related]
51. Causal phenotypic networks for egg traits in an F Goto T; Fernandes AFA; Tsudzuki M; Rosa GJM Mol Genet Genomics; 2019 Dec; 294(6):1455-1462. PubMed ID: 31240383 [TBL] [Abstract][Full Text] [Related]
52. Genome wide association mapping for grain shape traits in indica rice. Feng Y; Lu Q; Zhai R; Zhang M; Xu Q; Yang Y; Wang S; Yuan X; Yu H; Wang Y; Wei X Planta; 2016 Oct; 244(4):819-30. PubMed ID: 27198135 [TBL] [Abstract][Full Text] [Related]
53. Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS. Lin HY; Liu Q; Li X; Yang J; Liu S; Huang Y; Scanlon MJ; Nettleton D; Schnable PS Genome Biol; 2017 Oct; 18(1):192. PubMed ID: 29041960 [TBL] [Abstract][Full Text] [Related]
54. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810 [TBL] [Abstract][Full Text] [Related]
55. Novel distal eQTL analysis demonstrates effect of population genetic architecture on detecting and interpreting associations. Weiser M; Mukherjee S; Furey TS Genetics; 2014 Nov; 198(3):879-93. PubMed ID: 25230953 [TBL] [Abstract][Full Text] [Related]
56. E-MAGMA: an eQTL-informed method to identify risk genes using genome-wide association study summary statistics. Gerring ZF; Mina-Vargas A; Gamazon ER; Derks EM Bioinformatics; 2021 Aug; 37(16):2245-2249. PubMed ID: 33624746 [TBL] [Abstract][Full Text] [Related]
57. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways. Verardo LL; Silva FF; Lopes MS; Madsen O; Bastiaansen JW; Knol EF; Kelly M; Varona L; Lopes PS; Guimarães SE Genet Sel Evol; 2016 Feb; 48():9. PubMed ID: 26830357 [TBL] [Abstract][Full Text] [Related]
58. A systems biology framework integrating GWAS and RNA-seq to shed light on the molecular basis of sperm quality in swine. Gòdia M; Reverter A; González-Prendes R; Ramayo-Caldas Y; Castelló A; Rodríguez-Gil JE; Sánchez A; Clop A Genet Sel Evol; 2020 Dec; 52(1):72. PubMed ID: 33292187 [TBL] [Abstract][Full Text] [Related]
59. Multi-omic QTL mapping in early developmental tissues reveals phenotypic and temporal complexity of regulatory variants underlying GWAS loci. Arthur TD; Nguyen JP; D'Antonio-Chronowska A; Jaureguy J; Silva N; Henson B; ; Panopoulos AD; Belmonte JCI; D'Antonio M; McVicker G; Frazer KA bioRxiv; 2024 Apr; ():. PubMed ID: 38645112 [TBL] [Abstract][Full Text] [Related]
60. Genome-Wide Association Studies in Arabidopsis thaliana: Statistical Analysis and Network-Based Augmentation of Signals. Lee T; Lee I Methods Mol Biol; 2021; 2200():187-210. PubMed ID: 33175379 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]