These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 35155914)
1. Effects of the Design and Optimization of Trapezoidal Channels and Baffles (Number and Position) on the Net Power Density of Proton-Exchange Membrane Fuel Cells. Xu C; Wang H; Li Z; Cheng T ACS Omega; 2022 Feb; 7(5):4214-4223. PubMed ID: 35155914 [TBL] [Abstract][Full Text] [Related]
2. Numerical Study on the Effect of an Improved Three-Partition Baffle Flow Field on Proton Exchange Membrane Fuel Cell Performance. Deng X; Zhang E; Lei J; Jia D; Liu Y; Shuchao HE ACS Omega; 2022 Nov; 7(47):42872-42882. PubMed ID: 36467955 [TBL] [Abstract][Full Text] [Related]
3. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review. Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591 [TBL] [Abstract][Full Text] [Related]
4. Performance evaluation and economic analysis of integrated solid oxide electrolyzer cell and proton exchange membrane fuel cell for power generation. Abdollahipour A; Sayyaadi H Heliyon; 2024 Jul; 10(14):e34631. PubMed ID: 39113979 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Flow Channels in a PEM Fuel Cell Based on a Multiobjective Evaluation. Jiang D; Wang F; Li X; Tan J; Wang C ACS Omega; 2024 Jan; 9(1):1683-1694. PubMed ID: 38222584 [TBL] [Abstract][Full Text] [Related]
6. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells. Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593 [TBL] [Abstract][Full Text] [Related]
7. Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell. Li D; Li Y; Ma Z; Zheng M; Lu Z Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054596 [TBL] [Abstract][Full Text] [Related]
8. Flexible and Lightweight Fuel Cell with High Specific Power Density. Ning F; He X; Shen Y; Jin H; Li Q; Li D; Li S; Zhan Y; Du Y; Jiang J; Yang H; Zhou X ACS Nano; 2017 Jun; 11(6):5982-5991. PubMed ID: 28605195 [TBL] [Abstract][Full Text] [Related]
9. Performance Analysis and Optimization of a High-Temperature PEMFC Vehicle Based on Particle Swarm Optimization Algorithm. Li Y; Ma Z; Zheng M; Li D; Lu Z; Xu B Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564508 [TBL] [Abstract][Full Text] [Related]
10. A New Integrated GDL with Wavy Channel and Tunneled Rib for High Power Density PEMFC at Low Back Pressure and Wide Humidity. He C; Wen Q; Ning F; Shen M; He L; Li Y; Tian B; Pan S; Dan X; Li W; Xu P; Liu Y; Chai Z; Zhang Y; Liu W; Zhou X Adv Sci (Weinh); 2023 Oct; 10(28):e2302928. PubMed ID: 37541300 [TBL] [Abstract][Full Text] [Related]
11. Influence and Optimization of Gas Diffusion Layer Porosity Distribution along the Flow Direction on the Performance of Proton Exchange Membrane Fuel Cells. Zhang J; Xuan D; Liu S; Chen C ACS Omega; 2024 Jan; 9(1):239-251. PubMed ID: 38222527 [TBL] [Abstract][Full Text] [Related]
12. Effects of Cathode GDL Gradient Porosity Distribution along the Flow Channel Direction on Gas-Liquid Transport and Performance of PEMFC. Zhu R; Zhan Z; Zhang H; Du Q; Chen X; Xiang X; Wen X; Pan M Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050243 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional Nafion/CeO Choi J; Yeon JH; Yook SH; Shin S; Kim JY; Choi M; Jang S ACS Appl Mater Interfaces; 2021 Jan; 13(1):806-815. PubMed ID: 33393284 [TBL] [Abstract][Full Text] [Related]
14. Performance of the multi-U-style structure based flow field for polymer electrolyte membrane fuel cell. Qi W; Chen X; Zhang ZG; Ge S; Wang H; Deng R; Liu Z; Tuo J; Guo S; Cheng J Sci Rep; 2024 Oct; 14(1):23318. PubMed ID: 39375479 [TBL] [Abstract][Full Text] [Related]
15. Discrete-Particle Model to Optimize Operational Conditions of Proton-Exchange Membrane Fuel-Cell Gas Channels. Niblett D; Holmes SM; Niasar V ACS Appl Energy Mater; 2021 Oct; 4(10):10514-10533. PubMed ID: 34723137 [TBL] [Abstract][Full Text] [Related]
16. Finite Time Thermodynamic Modeling and Performance Analysis of High-Temperature Proton Exchange Membrane Fuel Cells. Li D; Ma Z; Shao W; Li Y; Guo X Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012422 [TBL] [Abstract][Full Text] [Related]
17. Hydraulic optimization of membrane bioreactor via baffle modification using computational fluid dynamics. Yan X; Xiao K; Liang S; Lei T; Liang P; Xue T; Yu K; Guan J; Huang X Bioresour Technol; 2015 Jan; 175():633-7. PubMed ID: 25465790 [TBL] [Abstract][Full Text] [Related]
18. Patterned Membranes for Proton Exchange Membrane Fuel Cells Working at Low Humidity. Fernihough O; Cheshire H; Romano JM; Ibrahim A; El-Kharouf A; Du S Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34208568 [TBL] [Abstract][Full Text] [Related]
19. Effects of Inhomogeneous Gas Diffusion Layer Properties on the Transportation Phenomenon and Performances of Proton-Exchange Membrane Fuel Cells. Lei H; Xia Y; Hu G ACS Omega; 2024 Feb; 9(8):9383-9395. PubMed ID: 38434892 [TBL] [Abstract][Full Text] [Related]
20. Scaling Up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules. Marappan M; Narayanan R; Manoharan K; Vijayakrishnan MK; Palaniswamy K; Karazhanov S; Sundaram S Molecules; 2021 Jan; 26(2):. PubMed ID: 33430043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]