These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 35156216)
1. A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans. Elton DC; Turkbey EB; Pickhardt PJ; Summers RM Med Phys; 2022 Apr; 49(4):2545-2554. PubMed ID: 35156216 [TBL] [Abstract][Full Text] [Related]
2. Automatic Detection and Scoring of Kidney Stones on Noncontrast CT Images Using S.T.O.N.E. Nephrolithometry: Combined Deep Learning and Thresholding Methods. Cui Y; Sun Z; Ma S; Liu W; Wang X; Zhang X; Wang X Mol Imaging Biol; 2021 Jun; 23(3):436-445. PubMed ID: 33108801 [TBL] [Abstract][Full Text] [Related]
3. Atherosclerotic Plaque Burden on Abdominal CT: Automated Assessment With Deep Learning on Noncontrast and Contrast-enhanced Scans. Summers RM; Elton DC; Lee S; Zhu Y; Liu J; Bagheri M; Sandfort V; Grayson PC; Mehta NN; Pinto PA; Linehan WM; Perez AA; Graffy PM; O'Connor SD; Pickhardt PJ Acad Radiol; 2021 Nov; 28(11):1491-1499. PubMed ID: 32958429 [TBL] [Abstract][Full Text] [Related]
4. Effective deep learning classification for kidney stone using axial computed tomography (CT) images. Sabuncu Ö; Bilgehan B; Kneebone E; Mirzaei O Biomed Tech (Berl); 2023 Oct; 68(5):481-491. PubMed ID: 37129960 [TBL] [Abstract][Full Text] [Related]
5. Fully Automated Longitudinal Assessment of Renal Stone Burden on Serial CT Imaging Using Deep Learning. Mukherjee P; Lee S; Elton DC; Nakada SY; Pickhardt PJ; Summers RM J Endourol; 2023 Aug; 37(8):948-955. PubMed ID: 37310890 [No Abstract] [Full Text] [Related]
6. Segmentation-based quantitative measurements in renal CT imaging using deep learning. Koukoutegos K; 's Heeren R; De Wever L; De Keyzer F; Maes F; Bosmans H Eur Radiol Exp; 2024 Oct; 8(1):110. PubMed ID: 39382755 [TBL] [Abstract][Full Text] [Related]
7. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
8. Deep-Learning Segmentation of Urinary Stones in Noncontrast Computed Tomography. Kim YI; Song SH; Park J; Youn HJ; Kweon J; Park HK J Endourol; 2023 May; 37(5):595-606. PubMed ID: 36924291 [No Abstract] [Full Text] [Related]
9. Deep learning model for automated kidney stone detection using coronal CT images. Yildirim K; Bozdag PG; Talo M; Yildirim O; Karabatak M; Acharya UR Comput Biol Med; 2021 Aug; 135():104569. PubMed ID: 34157470 [TBL] [Abstract][Full Text] [Related]
10. Automated segmentation of kidney and renal mass and automated detection of renal mass in CT urography using 3D U-Net-based deep convolutional neural network. Lin Z; Cui Y; Liu J; Sun Z; Ma S; Zhang X; Wang X Eur Radiol; 2021 Jul; 31(7):5021-5031. PubMed ID: 33439313 [TBL] [Abstract][Full Text] [Related]
11. Dose independent characterization of renal stones by means of dual energy computed tomography and machine learning: an ex-vivo study. Große Hokamp N; Lennartz S; Salem J; Pinto Dos Santos D; Heidenreich A; Maintz D; Haneder S Eur Radiol; 2020 Mar; 30(3):1397-1404. PubMed ID: 31773296 [TBL] [Abstract][Full Text] [Related]
12. Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT. Dreizin D; Zhou Y; Zhang Y; Tirada N; Yuille AL J Digit Imaging; 2020 Feb; 33(1):243-251. PubMed ID: 31172331 [TBL] [Abstract][Full Text] [Related]
13. Deep learning model-assisted detection of kidney stones on computed tomography. Caglayan A; Horsanali MO; Kocadurdu K; Ismailoglu E; Guneyli S Int Braz J Urol; 2022; 48(5):830-839. PubMed ID: 35838509 [TBL] [Abstract][Full Text] [Related]
15. Performance of threshold-based stone segmentation and radiomics for determining the composition of kidney stones from single-energy CT. Kaviani P; Primak A; Bizzo B; Ebrahimian S; Saini S; Dreyer KJ; Kalra MK Jpn J Radiol; 2023 Feb; 41(2):194-200. PubMed ID: 36331701 [TBL] [Abstract][Full Text] [Related]
16. Phase recognition in contrast-enhanced CT scans based on deep learning and random sampling. Dao BT; Nguyen TV; Pham HH; Nguyen HQ Med Phys; 2022 Jul; 49(7):4518-4528. PubMed ID: 35428990 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images. Netherton TJ; Rhee DJ; Cardenas CE; Chung C; Klopp AH; Peterson CB; Howell RM; Balter PA; Court LE Med Phys; 2020 Nov; 47(11):5592-5608. PubMed ID: 33459402 [TBL] [Abstract][Full Text] [Related]
18. Automated Machine Learning Segmentation and Measurement of Urinary Stones on CT Scan. Babajide R; Lembrikova K; Ziemba J; Ding J; Li Y; Fermin AS; Fan Y; Tasian GE Urology; 2022 Nov; 169():41-46. PubMed ID: 35908740 [TBL] [Abstract][Full Text] [Related]
19. Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning. De Perrot T; Hofmeister J; Burgermeister S; Martin SP; Feutry G; Klein J; Montet X Eur Radiol; 2019 Sep; 29(9):4776-4782. PubMed ID: 30747299 [TBL] [Abstract][Full Text] [Related]
20. Lymph node detection in CT scans using modified U-Net with residual learning and 3D deep network. Manjunatha Y; Sharma V; Iwahori Y; Bhuyan MK; Wang A; Ouchi A; Shimizu Y Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):723-732. PubMed ID: 36630071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]