These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35156276)
1. Conjugate-Driven Electron Density Delocalization of Piperidine Nitroxyl Radical for Stable Aqueous Zinc Hybrid Flow Batteries. Fan H; Hu B; Li H; Ravivarma M; Feng Y; Song J Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202115908. PubMed ID: 35156276 [TBL] [Abstract][Full Text] [Related]
2. Radical Charge Population and Energy: Critical Role in Redox Potential and Cycling Life of Piperidine Nitroxyl Radical Cathodes in Aqueous Zinc Hybrid Flow Batteries. Fan H; Zhang J; Ravivarma M; Li H; Hu B; Lei J; Feng Y; Xiong S; He C; Gong J; Gao T; Song J ACS Appl Mater Interfaces; 2020 Sep; 12(39):43568-43575. PubMed ID: 32856898 [TBL] [Abstract][Full Text] [Related]
3. Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries. Yan Y; Vogt DB; Vaid TP; Sigman MS; Sanford MS Angew Chem Int Ed Engl; 2021 Dec; 60(52):27039-27045. PubMed ID: 34672070 [TBL] [Abstract][Full Text] [Related]
4. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance. Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610 [TBL] [Abstract][Full Text] [Related]
5. Polypeptide Radical Cathode for Aqueous Zn-Ion Battery with Two-Electron Storage and Faster Charging Rate. Deng Y; Teng C; Wu Y; Zhang K; Yan L ChemSusChem; 2022 Apr; 15(7):e202102710. PubMed ID: 35191200 [TBL] [Abstract][Full Text] [Related]
7. Synergistic catalysis within core-shell Fe Karimi B; Ghaffari B; Vali H J Colloid Interface Sci; 2021 May; 589():474-485. PubMed ID: 33486283 [TBL] [Abstract][Full Text] [Related]
8. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte. Liu C; Shamie JS; Shaw LL; Sprenkle VL ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous evaluation of one-electron reducing systems and radical reactions in cells by nitroxyl biradical as probe. Araki Y; Koshiishi I Biomed Chromatogr; 2016 Jul; 30(7):1131-1137. PubMed ID: 26613564 [TBL] [Abstract][Full Text] [Related]
11. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries. Li L; Gong HX; Chen DY; Lin MJ Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233 [TBL] [Abstract][Full Text] [Related]
12. Homolysis of weak Ti-O bonds: experimental and theoretical studies of titanium oxygen bonds derived from stable nitroxyl radicals. Huang KW; Han JH; Cole AP; Musgrave CB; Waymouth RM J Am Chem Soc; 2005 Mar; 127(11):3807-16. PubMed ID: 15771515 [TBL] [Abstract][Full Text] [Related]
13. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries. Yan Y; Vaid TP; Sanford MS J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474 [TBL] [Abstract][Full Text] [Related]
14. A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. Luo J; Hu B; Debruler C; Liu TL Angew Chem Int Ed Engl; 2018 Jan; 57(1):231-235. PubMed ID: 29181865 [TBL] [Abstract][Full Text] [Related]
15. One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane. Chang Z; Henkensmeier D; Chen R ChemSusChem; 2017 Aug; 10(16):3193-3197. PubMed ID: 28714295 [TBL] [Abstract][Full Text] [Related]
16. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Wei X; Xu W; Vijayakumar M; Cosimbescu L; Liu T; Sprenkle V; Wang W Adv Mater; 2014 Dec; 26(45):7649-53. PubMed ID: 25327755 [TBL] [Abstract][Full Text] [Related]
17. Determination of antibiotics by amperometry using nortropine N-oxyl, a highly active nitroxyl radical. Ono T; Sato F; Kumano M; Komatsu S; Sugiyama K; Watanabe K; Yoshida K; Sasano Y; Fujimura T; Iwabuchi Y; Kashiwagi Y; Sato K Anal Sci; 2023 Oct; 39(10):1771-1775. PubMed ID: 37378820 [TBL] [Abstract][Full Text] [Related]
18. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Yan Y; Robinson SG; Vaid TP; Sigman MS; Sanford MS J Am Chem Soc; 2021 Aug; 143(33):13450-13459. PubMed ID: 34387084 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical reactions of highly active nitroxyl radicals with thiol compounds. Kumano M; Sugiyama K; Sato F; Komatsu S; Watanabe K; Ono T; Yoshida K; Sasano Y; Iwabuchi Y; Fujimura T; Kashiwagi Y; Sato K Anal Sci; 2023 Mar; 39(3):369-374. PubMed ID: 36576651 [TBL] [Abstract][Full Text] [Related]
20. Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity. Yang X; Garcia SN; Janoschka T; Kónya D; Hager MD; Schubert US Molecules; 2021 Jun; 26(13):. PubMed ID: 34201612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]