These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35156367)

  • 21. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Digital light processing (DLP) in tissue engineering: from promise to reality, and perspectives.
    Gong J; Qian Y; Lu K; Zhu Z; Siow L; Zhang C; Zhou S; Gu T; Yin J; Yu M; Wang H; Yang H
    Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36179679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DLP fabrication of HA scaffold with customized porous structures to regulate immune microenvironment and macrophage polarization for enhancing bone regeneration.
    Xiong S; Zhang Y; Zeng J; Zhou J; Liu S; Wei P; Liu H; Yi F; Wan Z; Xiong L; Zhang B; Li J
    Mater Today Bio; 2024 Feb; 24():100929. PubMed ID: 38229884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review.
    Alonso-Fernández I; Haugen HJ; López-Peña M; González-Cantalapiedra A; Muñoz F
    Acta Biomater; 2023 Sep; 168():1-21. PubMed ID: 37454707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering.
    Zhang J; Huang D; Liu S; Dong X; Li Y; Zhang H; Yang Z; Su Q; Huang W; Zheng W; Zhou W
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110054. PubMed ID: 31546401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration.
    Zhou X; Zhou G; Junka R; Chang N; Anwar A; Wang H; Yu X
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111420. PubMed ID: 33113493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherulites for large bone tissue engineering in vivo. II. Construct large volume of bone grafts.
    Zhi W; Zhang C; Duan K; Li X; Qu S; Wang J; Zhu Z; Huang P; Xia T; Liao G; Weng J
    J Biomed Mater Res A; 2014 Aug; 102(8):2491-501. PubMed ID: 23946164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering.
    Pei X; Ma L; Zhang B; Sun J; Sun Y; Fan Y; Gou Z; Zhou C; Zhang X
    Biofabrication; 2017 Nov; 9(4):045008. PubMed ID: 28976356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of hierarchical porous bioceramic scaffolds with controlled micro/nano surface topography for accelerating bone regeneration.
    Zhang H; Zhang H; Xiong Y; Dong L; Li X
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112437. PubMed ID: 34702522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds.
    Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T
    J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering.
    Iglesias-Mejuto A; García-González CA
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112525. PubMed ID: 34857304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair.
    Wu J; Miao G; Zheng Z; Li Z; Ren W; Wu C; Li Y; Huang Z; Yang L; Guo L
    J Biomater Appl; 2019 Jan; 33(6):755-765. PubMed ID: 30426864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a synthetic tissue engineered three-dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro.
    Adel-Khattab D; Giacomini F; Gildenhaar R; Berger G; Gomes C; Linow U; Hardt M; Peleska B; Günster J; Stiller M; Houshmand A; Ghaffar KA; Gamal A; El-Mofty M; Knabe C
    J Tissue Eng Regen Med; 2018 Jan; 12(1):44-58. PubMed ID: 27860335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds.
    Shao H; Sun M; Zhang F; Liu A; He Y; Fu J; Yang X; Wang H; Gou Z
    J Dent Res; 2018 Jan; 97(1):68-76. PubMed ID: 29020507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Biomaterials for bone defect repair and bone regeneration].
    Jiang XQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Oct; 52(10):600-604. PubMed ID: 29972932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].
    Wu T; Yang C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):509-13. PubMed ID: 27411283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.