These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35156662)

  • 41. First Report of Ditylenchus dipsaci on Garlic in Minnesota.
    Mollov DS; Subbotin SA; Rosen C
    Plant Dis; 2012 Nov; 96(11):1707. PubMed ID: 30727492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Invertebrate neurones, genomes, phenotypic and target-based screening; their contributions to the search for new chemical leads and new molecular targets for the control of pests, parasites and disease vectors.
    Sattelle DB
    Pestic Biochem Physiol; 2022 Oct; 187():105175. PubMed ID: 36127074
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event.
    Kyndt T; Haegeman A; Gheysen G
    BMC Evol Biol; 2008 Nov; 8():305. PubMed ID: 18980666
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Expansin-Like Candidate Effector Protein from
    Vieira P; Nemchinov LG
    Phytopathology; 2020 Mar; 110(3):684-693. PubMed ID: 31680651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Pratylenchus penetrans Transcriptome as a Source for the Development of Alternative Control Strategies: Mining for Putative Genes Involved in Parasitism and Evaluation of in planta RNAi.
    Vieira P; Eves-van den Akker S; Verma R; Wantoch S; Eisenback JD; Kamo K
    PLoS One; 2015; 10(12):e0144674. PubMed ID: 26658731
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Effect of Single and Combined Heat and CO2 Stimuli at Different Ambient Temperatures on the Behavior of Two Plant-Parasitic Nematodes.
    Klingler J
    J Nematol; 1972 Apr; 4(2):95-100. PubMed ID: 19319254
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In silico comparative analysis of tylenchid nematode pectate lyases.
    Moraes Filho RM; Martins LS
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated, high-throughput, motility analysis in Caenorhabditis elegans and parasitic nematodes: Applications in the search for new anthelmintics.
    Buckingham SD; Partridge FA; Sattelle DB
    Int J Parasitol Drugs Drug Resist; 2014 Dec; 4(3):226-32. PubMed ID: 25516833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New reduced-risk agricultural nematicides - rationale and review.
    Desaeger J; Wram C; Zasada I
    J Nematol; 2020; 52():. PubMed ID: 33829179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DAMAGE RESEARCH WITH P. PENETRANS IN ASPARAGUS PLANTS.
    Hoek J; Molendijk LP
    Commun Agric Appl Biol Sci; 2014; 79(2):301-8. PubMed ID: 26084109
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anatomical Alterations in Plant Tissues Induced by Plant-Parasitic Nematodes.
    Palomares-Rius JE; Escobar C; Cabrera J; Vovlas A; Castillo P
    Front Plant Sci; 2017; 8():1987. PubMed ID: 29201038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes.
    Sultana T; Kim J; Lee SH; Han H; Kim S; Min GS; Nadler SA; Park JK
    BMC Evol Biol; 2013 Jan; 13():12. PubMed ID: 23331769
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chip Technologies for Screening Chemical and Biological Agents Against Plant-Parasitic Nematodes.
    Beeman AQ; Njus ZL; Pandey S; Tylka GL
    Phytopathology; 2016 Dec; 106(12):1563-1571. PubMed ID: 27452899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Nematicide Seed Treatment to Control Ditylenchus dipsaci on Seedling Alfalfa.
    Gray FA; Soh DH
    J Nematol; 1989 Apr; 21(2):184-8. PubMed ID: 19287597
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transgenic Strategies for Enhancement of Nematode Resistance in Plants.
    Ali MA; Azeem F; Abbas A; Joyia FA; Li H; Dababat AA
    Front Plant Sci; 2017; 8():750. PubMed ID: 28536595
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward Chemical Ecology of Plant-Parasitic Nematodes: Kairomones, Pheromones, and Other Behaviorally Active Chemical Compounds.
    Čepulytė R; Bu da V
    J Agric Food Chem; 2022 Feb; 70(5):1367-1390. PubMed ID: 35099951
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluating the use of seaweed extracts against root knot nematodes: A meta-analytic approach.
    Williams TI; Edgington S; Owen A; Gange AC
    Appl Soil Ecol; 2021 Dec; 168():None. PubMed ID: 34866802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining.
    Danchin EG; Arguel MJ; Campan-Fournier A; Perfus-Barbeoch L; Magliano M; Rosso MN; Da Rocha M; Da Silva C; Nottet N; Labadie K; Guy J; Artiguenave F; Abad P
    PLoS Pathog; 2013 Oct; 9(10):e1003745. PubMed ID: 24204279
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distribution in the Western United States on Alfalfa and Cultivar Reaction to Mixed Populations of Ditylenchus dipsaci and Aphelenchoides ritzemabosi.
    Gray FA; Williams JL; Griffin GD; Wilson TE
    J Nematol; 1994 Dec; 26(4 Suppl):705-19. PubMed ID: 19279952
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.
    Zheng J; Peng D; Chen L; Liu H; Chen F; Xu M; Ju S; Ruan L; Sun M
    Proc Biol Sci; 2016 Jul; 283(1835):. PubMed ID: 27466450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.