These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35156726)

  • 1. Working principle and relevant physical properties of the Swiss Liquid Jet Aesthesiometer for Corneal Sensitivity (SLACS) evaluation.
    Nosch DS; Oscity M; Steigmeier P; Käser E; Loepfe M; Joos RE
    Ophthalmic Physiol Opt; 2022 May; 42(3):609-618. PubMed ID: 35156726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical application of the Swiss Liquid Jet Aesthesiometer for corneal sensitivity measurement.
    Nosch DS; Käser E; Bracher T; Joos RE
    Clin Exp Optom; 2024 Jan; 107(1):14-22. PubMed ID: 37019837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus characteristics of a novel air-based multiple stimulus aesthesiometer.
    Mungalsingh MA; Thompson B; Peterson SD; Murphy PJ
    Ophthalmic Physiol Opt; 2024 Jan; 44(1):32-41. PubMed ID: 37994563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does air gas aesthesiometry generate a true mechanical stimulus for corneal sensitivity measurement?
    Nosch DS; Pult H; Albon J; Purslow C; Murphy PJ
    Clin Exp Optom; 2018 Mar; 101(2):193-199. PubMed ID: 28922696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the sensory function of the ocular surface: implications of use of a non-contact air jet aesthesiometer versus the Cochet-Bonnet aesthesiometer.
    Golebiowski B; Papas E; Stapleton F
    Exp Eye Res; 2011 May; 92(5):408-13. PubMed ID: 21376718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the stimulus of an air-jet aesthesiometer: computerised modelling and subjective interpretation.
    Golebiowski B; Lim M; Papas E; Stapleton F
    Ophthalmic Physiol Opt; 2013 Mar; 33(2):104-13. PubMed ID: 23406490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corneal Nerve Assessment by Aesthesiometry: History, Advancements, and Future Directions.
    Crabtree JR; Tannir S; Tran K; Boente CS; Ali A; Borschel GH
    Vision (Basel); 2024 May; 8(2):. PubMed ID: 38804355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision, agreement and utility of a contemporary non-contact corneal aesthesiometer.
    Swanevelder SK; Misra SL; Tyler EF; McGhee CN
    Clin Exp Optom; 2020 Nov; 103(6):798-803. PubMed ID: 31869862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of the non-contact corneal aesthesiometer and its comparison with the Cochet-Bonnet aesthesiometer.
    Murphy PJ; Lawrenson JG; Patel S; Marshall J
    Ophthalmic Physiol Opt; 1998 Nov; 18(6):532-9. PubMed ID: 10070549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-Related Changes in Corneal Sensitivity.
    Nosch DS; Käser E; Bracher T; Joos RE
    Cornea; 2023 Oct; 42(10):1257-1262. PubMed ID: 36730377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.
    Murphy PJ; Morgan PB; Patel S; Marshall J
    Cornea; 1999 May; 18(3):333-42. PubMed ID: 10336038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship Between the Degree of Iris Pigmentation and Corneal Sensitivity to a Cooling Stimulus.
    Ntola AM; Nosch DS; Joos RE; Murphy PJ
    Cornea; 2019 Jun; 38(6):674-683. PubMed ID: 30964757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Physical and aerodynamic airflow relations of the air stream of the Micro-Air aesthesiometer].
    Kohlhaas M; Draeger J; Schmitz N; Böhm A; Bosse I; Hechler B
    Klin Monbl Augenheilkd; 1994 Oct; 205(4):218-25. PubMed ID: 7823522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Measuring corneal sensitivity with the air aesthesiometer in comparison with the Draeger electromagnetic air aesthesiometer].
    Kohlhaas M; Böhm A; Schmitz N; Draeger J
    Ophthalmologe; 1994 Oct; 91(5):685-90. PubMed ID: 7812106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus.
    Koprowski R; Ambrósio R
    Comput Biol Med; 2015 Nov; 66():170-8. PubMed ID: 26410602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The minimum stimulus energy required to produce a cooling sensation in the human cornea.
    Murphy PJ; Patel S; Morgan PB; Marshall J
    Ophthalmic Physiol Opt; 2001 Sep; 21(5):407-10. PubMed ID: 11563429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study.
    Ariza-Gracia MÁ; Zurita JF; Piñero DP; Rodriguez-Matas JF; Calvo B
    PLoS One; 2015; 10(3):e0121486. PubMed ID: 25780915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposal for a new approach to corneal biomechanics: dynamic corneal topography.
    Bonatti JA; Bechara SJ; Carricondo PC; Kara-José N
    Arq Bras Oftalmol; 2009; 72(2):264-7. PubMed ID: 19466344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corneal and conjunctival sensory function: the impact on ocular surface sensitivity of change from low to high oxygen transmissibility contact lenses.
    Golebiowski B; Papas EB; Stapleton F
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1177-81. PubMed ID: 22281824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of High-Speed Liquid-Jet Velocity Using a Pyro Jet Injector.
    Takagaki N; Kitaguchi T; Iwayama M; Shinoda A; Kumamaru H; Honda I
    Sci Rep; 2019 Dec; 9(1):19859. PubMed ID: 31882780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.