These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Higher metal-ligand coordination in the catalytic site of cobalt-substituted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis. Kleifeld O; Rulísek L; Bogin O; Frenkel A; Havlas Z; Burstein Y; Sagi I Biochemistry; 2004 Jun; 43(22):7151-61. PubMed ID: 15170352 [TBL] [Abstract][Full Text] [Related]
6. The conserved Glu-60 residue in Thermoanaerobacter brockii alcohol dehydrogenase is not essential for catalysis. Kleifeld O; Shi SP; Zarivach R; Eisenstein M; Sagi I Protein Sci; 2003 Mar; 12(3):468-79. PubMed ID: 12592017 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic studies of inhibited alcohol dehydrogenase from Thermoanaerobacter brockii: proposed structure for the catalytic intermediate state. Kleifeld O; Frenkel A; Bogin O; Eisenstein M; Brumfeld V; Burstein Y; Sagi I Biochemistry; 2000 Jul; 39(26):7702-11. PubMed ID: 10869175 [TBL] [Abstract][Full Text] [Related]
8. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Liang AD; Serrano-Plana J; Peterson RL; Ward TR Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358 [TBL] [Abstract][Full Text] [Related]
9. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities. Heinisch T; Ward TR Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561 [TBL] [Abstract][Full Text] [Related]
10. Bioaffinity purification of NADP(+)-dependent dehydrogenases: studies with alcohol dehydrogenase from Thermoanaerobacter brockii. McMahon M; Mulcahy P Biotechnol Bioeng; 2002 Mar; 77(5):517-27. PubMed ID: 11788950 [TBL] [Abstract][Full Text] [Related]
11. Iridium(III) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution. Liu B; Zubi YS; Lewis JC Dalton Trans; 2023 Apr; 52(16):5034-5038. PubMed ID: 37060130 [TBL] [Abstract][Full Text] [Related]
12. Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids. Bogin O; Peretz M; Burstein Y Protein Sci; 1997 Feb; 6(2):450-8. PubMed ID: 9041649 [TBL] [Abstract][Full Text] [Related]
13. Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design. Heinisch T; Pellizzoni M; Dürrenberger M; Tinberg CE; Köhler V; Klehr J; Häussinger D; Baker D; Ward TR J Am Chem Soc; 2015 Aug; 137(32):10414-9. PubMed ID: 26226626 [TBL] [Abstract][Full Text] [Related]
14. Time-dependent XAS studies of trapped enzyme-substrate complexes of alcohol dehydrogenase from Thermoanaerobacter brockii. Kleifeld O; Frenkel A; Sagi I J Synchrotron Radiat; 2001 Mar; 8(Pt 2):978-80. PubMed ID: 11513000 [TBL] [Abstract][Full Text] [Related]
15. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Roelfes G Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372 [TBL] [Abstract][Full Text] [Related]
16. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. Korkhin Y; Kalb(Gilboa) AJ; Peretz M; Bogin O; Burstein Y; Frolow F J Mol Biol; 1998 May; 278(5):967-81. PubMed ID: 9836873 [TBL] [Abstract][Full Text] [Related]
17. Alternative Strategy to Obtain Artificial Imine Reductase by Exploiting Vancomycin/D-Ala-D-Ala Interactions with an Iridium Metal Complex. Facchetti G; Bucci R; Fusè M; Erba E; Gandolfi R; Pellegrino S; Rimoldi I Inorg Chem; 2021 Mar; 60(5):2976-2982. PubMed ID: 33550804 [TBL] [Abstract][Full Text] [Related]
18. Kinetic and structural analysis of redox-reversible artificial imine reductases. Miller AH; Martins IBS; Blagova EV; Wilson KS; Duhme-Klair AK J Inorg Biochem; 2024 Nov; 260():112691. PubMed ID: 39126757 [TBL] [Abstract][Full Text] [Related]
19. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis. Lewis JC Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755 [TBL] [Abstract][Full Text] [Related]
20. Site-Selective Functionalization of (sp Gu Y; Natoli SN; Liu Z; Clark DS; Hartwig JF Angew Chem Int Ed Engl; 2019 Sep; 58(39):13954-13960. PubMed ID: 31356719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]