BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35156975)

  • 1. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase.
    Martins FL; Pordea A; Jäger CM
    Faraday Discuss; 2022 May; 234(0):315-335. PubMed ID: 35156975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of artificial metalloenzymes for the reduction of nicotinamide cofactors.
    Basle M; Padley HAW; Martins FL; Winkler GS; Jäger CM; Pordea A
    J Inorg Biochem; 2021 Jul; 220():111446. PubMed ID: 33865209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalyst-artificial metalloenzyme cascade based on alcohol dehydrogenase.
    Morra S; Pordea A
    Chem Sci; 2018 Oct; 9(38):7447-7454. PubMed ID: 30319745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher metal-ligand coordination in the catalytic site of cobalt-substituted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis.
    Kleifeld O; Rulísek L; Bogin O; Frenkel A; Havlas Z; Burstein Y; Sagi I
    Biochemistry; 2004 Jun; 43(22):7151-61. PubMed ID: 15170352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conserved Glu-60 residue in Thermoanaerobacter brockii alcohol dehydrogenase is not essential for catalysis.
    Kleifeld O; Shi SP; Zarivach R; Eisenstein M; Sagi I
    Protein Sci; 2003 Mar; 12(3):468-79. PubMed ID: 12592017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies of inhibited alcohol dehydrogenase from Thermoanaerobacter brockii: proposed structure for the catalytic intermediate state.
    Kleifeld O; Frenkel A; Bogin O; Eisenstein M; Brumfeld V; Burstein Y; Sagi I
    Biochemistry; 2000 Jul; 39(26):7702-11. PubMed ID: 10869175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaffinity purification of NADP(+)-dependent dehydrogenases: studies with alcohol dehydrogenase from Thermoanaerobacter brockii.
    McMahon M; Mulcahy P
    Biotechnol Bioeng; 2002 Mar; 77(5):517-27. PubMed ID: 11788950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridium(III) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution.
    Liu B; Zubi YS; Lewis JC
    Dalton Trans; 2023 Apr; 52(16):5034-5038. PubMed ID: 37060130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids.
    Bogin O; Peretz M; Burstein Y
    Protein Sci; 1997 Feb; 6(2):450-8. PubMed ID: 9041649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design.
    Heinisch T; Pellizzoni M; Dürrenberger M; Tinberg CE; Köhler V; Klehr J; Häussinger D; Baker D; Ward TR
    J Am Chem Soc; 2015 Aug; 137(32):10414-9. PubMed ID: 26226626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent XAS studies of trapped enzyme-substrate complexes of alcohol dehydrogenase from Thermoanaerobacter brockii.
    Kleifeld O; Frenkel A; Sagi I
    J Synchrotron Radiat; 2001 Mar; 8(Pt 2):978-80. PubMed ID: 11513000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii.
    Korkhin Y; Kalb(Gilboa) AJ; Peretz M; Bogin O; Burstein Y; Frolow F
    J Mol Biol; 1998 May; 278(5):967-81. PubMed ID: 9836873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative Strategy to Obtain Artificial Imine Reductase by Exploiting Vancomycin/D-Ala-D-Ala Interactions with an Iridium Metal Complex.
    Facchetti G; Bucci R; Fusè M; Erba E; Gandolfi R; Pellegrino S; Rimoldi I
    Inorg Chem; 2021 Mar; 60(5):2976-2982. PubMed ID: 33550804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Selective Functionalization of (sp
    Gu Y; Natoli SN; Liu Z; Clark DS; Hartwig JF
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13954-13960. PubMed ID: 31356719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.