BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35156975)

  • 21. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation.
    Biggs GS; Klein OJ; Maslen SL; Skehel JM; Rutherford TJ; Freund SMV; Hollfelder F; Boss SR; Barker PD
    Angew Chem Int Ed Engl; 2021 May; 60(19):10919-10927. PubMed ID: 33616271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amide Iridium Complexes As Catalysts for Transfer Hydrogenation Reduction of
    Wen H; Luo N; Zhu Q; Luo R
    J Org Chem; 2021 Mar; 86(5):3850-3859. PubMed ID: 33595324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase.
    Stein A; Chen D; Igareta NV; Cotelle Y; Rebelein JG; Ward TR
    ACS Cent Sci; 2021 Nov; 7(11):1874-1884. PubMed ID: 34849402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology.
    Zimbron JM; Heinisch T; Schmid M; Hamels D; Nogueira ES; Schirmer T; Ward TR
    J Am Chem Soc; 2013 Apr; 135(14):5384-8. PubMed ID: 23496309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrostatic pressure induces conformational and catalytic changes on two alcohol dehydrogenases but no oligomeric dissociation.
    Dallet S; Legoy MD
    Biochim Biophys Acta; 1996 May; 1294(1):15-24. PubMed ID: 8639709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox-reversible siderophore-based catalyst anchoring within cross-linked artificial metalloenzyme aggregates enables enantioselectivity switching.
    Miller AH; Thompson SA; Blagova EV; Wilson KS; Grogan G; Duhme-Klair AK
    Chem Commun (Camb); 2024 May; 60(42):5490-5493. PubMed ID: 38699837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
    Schwizer F; Okamoto Y; Heinisch T; Gu Y; Pellizzoni MM; Lebrun V; Reuter R; Köhler V; Lewis JC; Ward TR
    Chem Rev; 2018 Jan; 118(1):142-231. PubMed ID: 28714313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor.
    Betanzos-Lara S; Liu Z; Habtemariam A; Pizarro AM; Qamar B; Sadler PJ
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3897-900. PubMed ID: 22415924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High Selectivity Cofactor NADH Regeneration Organic Iridium Complexes Used for High-Efficiency Chem-Enzyme Cascade Catalytic Hydrogen Transfer.
    Zhao LJ; Zhang C; Zhang S; Lv X; Chen J; Sun X; Su H; Murayama T; Qi C
    Inorg Chem; 2023 Oct; 62(43):17577-17582. PubMed ID: 37843583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenases from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii.
    Peretz M; Bogin O; Tel-Or S; Cohen A; Li G; Chen JS; Burstein Y
    Anaerobe; 1997 Aug; 3(4):259-70. PubMed ID: 16887600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids.
    Zhu SF; Zhou QL
    Acc Chem Res; 2017 Apr; 50(4):988-1001. PubMed ID: 28374998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A kinetic locking-on strategy for bioaffinity purification: further studies with alcohol dehydrogenase.
    O'flaherty M; McMahon M; Mulcahy P
    Protein Expr Purif; 1999 Feb; 15(1):127-45. PubMed ID: 10024480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Substitutability of metal-binding sites in an alcohol dehydrogenase].
    Bi Y; Jiang Y; Qin Z; Qu G; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2022 Apr; 38(4):1518-1526. PubMed ID: 35470623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistically driven development of iridium catalysts for asymmetric allylic substitution.
    Hartwig JF; Stanley LM
    Acc Chem Res; 2010 Dec; 43(12):1461-75. PubMed ID: 20873839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase.
    Bogin O; Peretz M; Hacham Y; Korkhin Y; Frolow F; Kalb(Gilboa) AJ; Burstein Y
    Protein Sci; 1998 May; 7(5):1156-63. PubMed ID: 9836874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.