These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35156986)

  • 1. Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications.
    Ding Q; Wu Z; Tao K; Wei Y; Wang W; Yang BR; Xie X; Wu J
    Mater Horiz; 2022 May; 9(5):1356-1386. PubMed ID: 35156986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications.
    Zhang Z; Hao J
    Adv Colloid Interface Sci; 2021 Jun; 292():102408. PubMed ID: 33932827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability.
    Guo WY; Yuan Q; Huang LZ; Zhang W; Li DD; Yao C; Ma MG
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):820-829. PubMed ID: 34785459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring.
    Wu J; Wu Z; Lu X; Han S; Yang BR; Gui X; Tao K; Miao J; Liu C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9405-9414. PubMed ID: 30763515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Crystallization-Mediated Self-Strengthening of High-Performance Printable Conducting Organohydrogels.
    Liu J; Zhang B; Zhang P; Zhao K; Lu Z; Wei H; Zheng Z; Yang R; Yu Y
    ACS Nano; 2022 Nov; 16(11):17998-18008. PubMed ID: 36136126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-freezing, Conductive Self-healing Organohydrogels with Stable Strain-Sensitivity at Subzero Temperatures.
    Rong Q; Lei W; Chen L; Yin Y; Zhou J; Liu M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14159-14163. PubMed ID: 28940584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tough Adhesion of Freezing- and Drying-Tolerant Transparent Nanocomposite Organohydrogels.
    Liu B; Li F; Niu P; Li H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21822-21830. PubMed ID: 33913687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Extreme-Temperature- and Environment-Adaptable Hydrogels.
    Zhou D; Chen F; Handschuh-Wang S; Gan T; Zhou X; Zhou X
    Chemphyschem; 2019 Sep; 20(17):2139-2154. PubMed ID: 31321876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors.
    Cheng Y; Zang J; Zhao X; Wang H; Hu Y
    Carbohydr Polym; 2022 Feb; 277():118872. PubMed ID: 34893277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors.
    Wu Z; Yang X; Wu J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2128-2144. PubMed ID: 33405508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments.
    Jian Y; Handschuh-Wang S; Zhang J; Lu W; Zhou X; Chen T
    Mater Horiz; 2021 Feb; 8(2):351-369. PubMed ID: 34821259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.
    Wang Z; Cong Y; Fu J
    J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesive and high-sensitivity modified Ti
    Wang J; Dai T; Zhou Y; Mohamed A; Yuan G; Jia H
    J Colloid Interface Sci; 2022 May; 613():94-102. PubMed ID: 35032780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesive, Stretchable, and Transparent Organohydrogels for Antifreezing, Antidrying, and Sensitive Ionic Skins.
    He Z; Yuan W
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1474-1485. PubMed ID: 33393770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide-based composite organohydrogels with high strength and low temperature resistance for strain sensors.
    Zhao R; Jiang L; Zhang P; Li D; Guo Z; Hu L
    Soft Matter; 2022 Feb; 18(6):1201-1208. PubMed ID: 35040471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-Freezing, Non-Drying, Localized Stiffening, and Shape-Morphing Organohydrogels.
    Shen J; Du S; Xu Z; Gan T; Handschuh-Wang S; Zhang X
    Gels; 2022 May; 8(6):. PubMed ID: 35735675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Stretchable, Shape Memory Organohydrogels Using Phase-Transition Microinclusions.
    Zhao Z; Zhang K; Liu Y; Zhou J; Liu M
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28635019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance.
    Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J
    ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional conductive hydrogels and their applications as smart wearable devices.
    Chen Z; Chen Y; Hedenqvist MS; Chen C; Cai C; Li H; Liu H; Fu J
    J Mater Chem B; 2021 Mar; 9(11):2561-2583. PubMed ID: 33599653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation.
    Zhou X; Li C; Zhu L; Zhou X
    Chem Commun (Camb); 2020 Nov; 56(89):13731-13747. PubMed ID: 33094746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.