These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35157015)

  • 1. EMBER: multi-label prediction of kinase-substrate phosphorylation events through deep learning.
    Kirchoff KE; Gomez SM
    Bioinformatics; 2022 Apr; 38(8):2119-2126. PubMed ID: 35157015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepPhos: prediction of protein phosphorylation sites with deep learning.
    Luo F; Wang M; Liu Y; Zhao XM; Li A
    Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosformer: an explainable transformer model for protein kinase-specific phosphorylation predictions.
    Zhou Z; Yeung W; Gravel N; Salcedo M; Soleymani S; Li S; Kannan N
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based multi-functional therapeutic peptides prediction with a multi-label focal dice loss function.
    Fan H; Yan W; Wang L; Liu J; Bin Y; Xia J
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37216900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explainable automated coding of clinical notes using hierarchical label-wise attention networks and label embedding initialisation.
    Dong H; Suárez-Paniagua V; Whiteley W; Wu H
    J Biomed Inform; 2021 Apr; 116():103728. PubMed ID: 33711543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information.
    Yang H; Wang M; Liu X; Zhao XM; Li A
    Bioinformatics; 2021 Dec; 37(24):4668-4676. PubMed ID: 34320631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme Promiscuity Prediction Using Hierarchy-Informed Multi-Label Classification.
    Visani GM; Hughes MC; Hassoun S
    Bioinformatics; 2021 Aug; 37(14):2017–2024. PubMed ID: 33515234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images.
    Wang F; Wei L
    Bioinformatics; 2022 Apr; 38(9):2602-2611. PubMed ID: 35212728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinome-wide identification of phosphorylation networks in eukaryotic proteomes.
    Parca L; Ariano B; Cabibbo A; Paoletti M; Tamburrini A; Palmeri A; Ausiello G; Helmer-Citterich M
    Bioinformatics; 2019 Feb; 35(3):372-379. PubMed ID: 30016513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using explainable machine learning to uncover the kinase-substrate interaction landscape.
    Zhou Z; Yeung W; Soleymani S; Gravel N; Salcedo M; Li S; Kannan N
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38244571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capsule network for protein post-translational modification site prediction.
    Wang D; Liang Y; Xu D
    Bioinformatics; 2019 Jul; 35(14):2386-2394. PubMed ID: 30520972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepKinZero: zero-shot learning for predicting kinase-phosphosite associations involving understudied kinases.
    Deznabi I; Arabaci B; Koyutürk M; Tastan O
    Bioinformatics; 2020 Jun; 36(12):3652-3661. PubMed ID: 32044914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.