BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 35157023)

  • 1. MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification.
    Moon S; Lee H
    Bioinformatics; 2022 Apr; 38(8):2287-2296. PubMed ID: 35157023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-omics data integration by generative adversarial network.
    Ahmed KT; Sun J; Cheng S; Yong J; Zhang W
    Bioinformatics; 2021 Dec; 38(1):179-186. PubMed ID: 34415323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable meta-learning of multi-omics data for survival analysis and pathway enrichment.
    Cho HJ; Shu M; Bekiranov S; Zang C; Zhang A
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36864611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data.
    Zuo C; Dai H; Chen L
    Bioinformatics; 2021 Nov; 37(22):4091-4099. PubMed ID: 34028557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks.
    Wang J; Liao N; Du X; Chen Q; Wei B
    BMC Genomics; 2024 Jan; 25(1):86. PubMed ID: 38254021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOINER: A Novel Multiomics Early Integration Framework for Biomedical Classification and Biomarker Discovery.
    Zhang W; Mou M; Hu W; Lu M; Zhang H; Zhang H; Luo Y; Xu H; Tao L; Dai H; Gao J; Zhu F
    J Chem Inf Model; 2024 Apr; 64(7):2720-2732. PubMed ID: 38373720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HyperTMO: a trusted multi-omics integration framework based on hypergraph convolutional network for patient classification.
    Wang H; Lin K; Zhang Q; Shi J; Song X; Wu J; Zhao C; He K
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38530977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathformer: a biological pathway informed transformer for disease diagnosis and prognosis using multi-omics data.
    Liu X; Tao Y; Cai Z; Bao P; Ma H; Li K; Li M; Zhu Y; Lu ZJ
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38741230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A denoised multi-omics integration framework for cancer subtype classification and survival prediction.
    Pang J; Liang B; Ding R; Yan Q; Chen R; Xu J
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-omics integration method based on attention deep learning network for biomedical data classification.
    Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L
    Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepKEGG: a multi-omics data integration framework with biological insights for cancer recurrence prediction and biomarker discovery.
    Lan W; Liao H; Chen Q; Zhu L; Pan Y; Chen YP
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model.
    Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C
    BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cross-level information transmission network for hierarchical omics data integration and phenotype prediction from a new genotype.
    He D; Xie L
    Bioinformatics; 2021 Dec; 38(1):204-210. PubMed ID: 34390577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data.
    Ditz JC; Reuter B; Pfeifer N
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i76-i85. PubMed ID: 37387152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CLCLSA: Cross-omics linked embedding with contrastive learning and self attention for integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Comput Biol Med; 2024 Mar; 170():108058. PubMed ID: 38295477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty-aware dynamic integration for multi-omics classification of tumors.
    Du L; Liu C; Wei R; Chen J
    J Cancer Res Clin Oncol; 2023 Jul; 149(7):3301-3312. PubMed ID: 35925427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer subtype identification by consensus guided graph autoencoders.
    Liang C; Shang M; Luo J
    Bioinformatics; 2021 Dec; 37(24):4779-4786. PubMed ID: 34289034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian linear mixed model with multiple random effects for prediction analysis on high-dimensional multi-omics data.
    Hai Y; Ma J; Yang K; Wen Y
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37882747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.
    Choi JM; Chae H
    BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.