These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35157178)

  • 1. Ocean Acidification Alters Developmental Timing and Gene Expression of Ion Transport Proteins During Larval Development in Resilient and Susceptible Lineages of the Pacific Oyster (Crassostrea gigas).
    Wright-LaGreca M; Mackenzie C; Green TJ
    Mar Biotechnol (NY); 2022 Mar; 24(1):116-124. PubMed ID: 35157178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms.
    De Wit P; Durland E; Ventura A; Langdon CJ
    BMC Genomics; 2018 Feb; 19(1):160. PubMed ID: 29471790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas.
    Harney E; Artigaud S; Le Souchu P; Miner P; Corporeau C; Essid H; Pichereau V; Nunes FLD
    J Proteomics; 2016 Mar; 135():151-161. PubMed ID: 26657130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification.
    Lim YK; Dang X; Thiyagarajan V
    Sci Total Environ; 2021 Aug; 782():146704. PubMed ID: 33848868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification.
    Chandra Rajan K; Li Y; Dang X; Lim YK; Suzuki M; Lee SW; Vengatesen T
    Proc Biol Sci; 2023 Jan; 290(1991):20221216. PubMed ID: 36651043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis.
    Lim YK; Cheung K; Dang X; Roberts SB; Wang X; Thiyagarajan V
    Mar Environ Res; 2021 Jan; 163():105217. PubMed ID: 33276167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis.
    Lim YK; Cheung K; Dang X; Roberts SB; Wang X; Thiyagarajan V
    Mar Environ Res; 2021 Jan; 163():105214. PubMed ID: 33221553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic lipid responses of larval oysters to ocean acidification.
    Gibbs MC; Parker LM; Scanes E; Byrne M; O'Connor WA; Ross PM
    Mar Pollut Bull; 2021 Jul; 168():112441. PubMed ID: 33991985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D1 dopamine receptor is involved in shell formation in larvae of Pacific oyster Crassostrea gigas.
    Liu Z; Wang L; Yan Y; Zheng Y; Ge W; Li M; Wang W; Song X; Song L
    Dev Comp Immunol; 2018 Jul; 84():337-342. PubMed ID: 29550270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of Seawater pH Buffering on the Larval Microbiome and Carry-Over Effects on Later-Life Disease Susceptibility in Pacific Oysters.
    Mackenzie CL; Pearce CM; Leduc S; Roth D; Kellogg CTE; Clemente-Carvalho RBG; Green TJ
    Appl Environ Microbiol; 2022 Nov; 88(22):e0165422. PubMed ID: 36342150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of a tyrosinase gene involved in early larval shell biogenesis in Crassostrea angulata and its response to ocean acidification.
    Yang B; Pu F; Li L; You W; Ke C; Feng D
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Apr; 206():8-15. PubMed ID: 28108366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas).
    Wang X; Li P; Cao X; Liu B; He S; Cao Z; Xing S; Liu L; Li ZH
    Environ Pollut; 2022 Nov; 313():120161. PubMed ID: 36100119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prokaryotic and eukaryotic microbiome of Pacific oyster spat is shaped by ocean warming but not acidification.
    Zhong KX; Chan AM; Collicutt B; Daspe M; Finke JF; Foss M; Green TJ; Harley CDG; Hesketh AV; Miller KM; Otto SP; Rolheiser K; Saunders R; Sutherland BJG; Suttle CA
    Appl Environ Microbiol; 2024 Apr; 90(4):e0005224. PubMed ID: 38466091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bone morphogenetic protein regulates the shell formation of Crassostrea gigas under ocean acidification.
    Gao Y; Liu Z; Zhu T; Xin X; Jin Y; Wang L; Liu C; Song L
    Gene; 2023 Oct; 884():147687. PubMed ID: 37541558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seawater acidification increases copper toxicity: A multi-biomarker approach with a key marine invertebrate, the Pacific Oyster Crassostrea gigas.
    Cao R; Zhang T; Li X; Zhao Y; Wang Q; Yang D; Qu Y; Liu H; Dong Z; Zhao J
    Aquat Toxicol; 2019 May; 210():167-178. PubMed ID: 30870663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNAi Silencing of the Biomineralization Gene Perlucin Impairs Oyster Ability to Cope with Ocean Acidification.
    Schwaner C; Pales Espinosa E; Allam B
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oyster biomineralization under ocean acidification: From genes to shell.
    Chandra Rajan K; Meng Y; Yu Z; Roberts SB; Vengatesen T
    Glob Chang Biol; 2021 Aug; 27(16):3779-3797. PubMed ID: 33964098
    [TBL] [