BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35157276)

  • 1. Assessing the Aggregation Propensity of Single-Domain Antibodies upon Heat-Denaturation Employing the ΔT
    Kunz P
    Methods Mol Biol; 2022; 2446():233-244. PubMed ID: 35157276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation.
    Kunz P; Ortale A; Mücke N; Zinner K; Hoheisel JD
    Protein Eng Des Sel; 2019 Dec; 32(5):241-249. PubMed ID: 31340035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative tail fusions can improve ruggedness of single domain antibodies.
    Goldman ER; Brozozog-Lee PA; Zabetakis D; Turner KB; Walper SA; Liu JL; Anderson GP
    Protein Expr Purif; 2014 Mar; 95():226-32. PubMed ID: 24440507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection, characterization, and thermal stabilization of llama single domain antibodies towards Ebola virus glycoprotein.
    Liu JL; Shriver-Lake LC; Anderson GP; Zabetakis D; Goldman ER
    Microb Cell Fact; 2017 Dec; 16(1):223. PubMed ID: 29233140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations.
    Svilenov H; Markoja U; Winter G
    Eur J Pharm Biopharm; 2018 Apr; 125():106-113. PubMed ID: 29329817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications.
    Akazawa-Ogawa Y; Takashima M; Lee YH; Ikegami T; Goto Y; Uegaki K; Hagihara Y
    J Biol Chem; 2014 May; 289(22):15666-79. PubMed ID: 24739391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies.
    Akazawa-Ogawa Y; Uegaki K; Hagihara Y
    J Biochem; 2016 Jan; 159(1):111-21. PubMed ID: 26289739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational stability, reversibility and heat-induced aggregation of α-1-acid glycoprotein.
    Iwura T; Fukuda J; Yamazaki K; Arisaka F
    J Biochem; 2014 Dec; 156(6):345-52. PubMed ID: 25147193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Scanning Calorimetry to Quantify Heat-Induced Aggregation in Concentrated Protein Solutions.
    Jacobs MR; Grace M; Blumlein A; McManus JJ
    Methods Mol Biol; 2019; 2039():117-129. PubMed ID: 31342423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long term stability of a HIV-1 neutralizing monoclonal antibody using isothermal calorimetry.
    Clarkson BR; Chaudhuri R; Schön A; Cooper JW; Kueltzo L; Freire E
    Anal Biochem; 2018 Aug; 554():61-69. PubMed ID: 29750942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel non-linear curve fitting to resolve protein unfolding transitions in intrinsic fluorescence differential scanning fluorimetry.
    Augustijn D; Mahapatra S; Streicher W; Svilenov H; Kulakova A; Pohl C; Rinnan Å
    Eur J Pharm Biopharm; 2019 Sep; 142():506-517. PubMed ID: 31175923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a noncanonical Cys40-Cys55 disulfide linkage for stabilization of single-domain antibodies.
    Kim DY; Kandalaft H; Hussack G; Raphael S; Ding W; Kelly JF; Henry KA; Tanha J
    Protein Sci; 2019 May; 28(5):881-888. PubMed ID: 30803088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody.
    Zabetakis D; Anderson GP; Bayya N; Goldman ER
    PLoS One; 2013; 8(10):e77678. PubMed ID: 24143255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Unfolding Reversibility Studies and Molecular Dynamics Simulations to Select Aggregation-Resistant Antibodies.
    Berner C; Menzen T; Winter G; Svilenov HL
    Mol Pharm; 2021 Jun; 18(6):2242-2253. PubMed ID: 33928776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic aggregation of tobacco mosaic virus coat protein.
    Orlov VN; Arutyunyan AM; Kust SV; Litmanovich EA; Drachev VA; Dobrov EN
    Biochemistry (Mosc); 2001 Feb; 66(2):154-62. PubMed ID: 11255122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry.
    Schön A; Clarkson BR; Jaime M; Freire E
    Proteins; 2017 Nov; 85(11):2009-2016. PubMed ID: 28722205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthogonal Methods for Characterizing the Unfolding of Therapeutic Monoclonal Antibodies: Differential Scanning Calorimetry, Isothermal Chemical Denaturation, and Intrinsic Fluorescence with Concomitant Static Light Scattering.
    Temel DB; Landsman P; Brader ML
    Methods Enzymol; 2016; 567():359-89. PubMed ID: 26794361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-MHC I complex stability measured by nanoscale differential scanning fluorimetry reveals molecular mechanism of thermal denaturation.
    Saikia A; Springer S
    Mol Immunol; 2021 Aug; 136():73-81. PubMed ID: 34091103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced stabilization of a stable single domain antibody for SEB toxin by random mutagenesis and stringent selection.
    Turner KB; Zabetakis D; Goldman ER; Anderson GP
    Protein Eng Des Sel; 2014 Mar; 27(3):89-95. PubMed ID: 24488977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody.
    Zabetakis D; Olson MA; Anderson GP; Legler PM; Goldman ER
    PLoS One; 2014; 9(12):e115405. PubMed ID: 25526640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.