These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 35157593)

  • 1. Construction of Deep ReLU Nets for Spatially Sparse Learning.
    Liu X; Wang D; Lin SB
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7746-7760. PubMed ID: 35157593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalization and Expressivity for Deep Nets.
    Lin SB
    IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1392-1406. PubMed ID: 30281491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of Spatial Sparseness by Deep ReLU Nets With Massive Data.
    Chui CK; Lin SB; Zhang B; Zhou DX
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):229-243. PubMed ID: 33064653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization.
    Han Z; Yu S; Lin SB; Zhou DX
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):1853-1868. PubMed ID: 33079656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random Sketching for Neural Networks With ReLU.
    Wang D; Zeng J; Lin SB
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):748-762. PubMed ID: 32275612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent Sparse Deep Learning: Theory and Computation.
    Sun Y; Song Q; Liang F
    J Am Stat Assoc; 2022; 117(540):1981-1995. PubMed ID: 36945326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery.
    Feng Y; Lv SG; Hang H; Suykens JA
    Neural Comput; 2016 Mar; 28(3):525-62. PubMed ID: 26735744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem.
    Montanelli H; Yang H
    Neural Netw; 2020 Sep; 129():1-6. PubMed ID: 32473577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low dimensional approximation and generalization of multivariate functions on smooth manifolds using deep ReLU neural networks.
    Labate D; Shi J
    Neural Netw; 2024 Jun; 174():106223. PubMed ID: 38458005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast generalization error bound of deep learning without scale invariance of activation functions.
    Terada Y; Hirose R
    Neural Netw; 2020 Sep; 129():344-358. PubMed ID: 32593931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximate Policy Iteration With Deep Minimax Average Bellman Error Minimization.
    Kang L; Liu Y; Luo Y; Yang JZ; Yuan H; Zhu C
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38194389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of deep networks with ReLU activation function and linear spline-type methods.
    Eckle K; Schmidt-Hieber J
    Neural Netw; 2019 Feb; 110():232-242. PubMed ID: 30616095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error bounds for approximations with deep ReLU networks.
    Yarotsky D
    Neural Netw; 2017 Oct; 94():103-114. PubMed ID: 28756334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning brain representation using recurrent Wasserstein generative adversarial net.
    Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S
    Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparseness Analysis in the Pretraining of Deep Neural Networks.
    Li J; Zhang T; Luo W; Yang J; Yuan XT; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2017 Jun; 28(6):1425-1438. PubMed ID: 27046912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of training and generalization errors in shallow and deep networks.
    Mhaskar HN; Poggio T
    Neural Netw; 2020 Jan; 121():229-241. PubMed ID: 31574413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Optimal Transport Analysis on Generalization in Deep Learning.
    Zhang J; Liu T; Tao D
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):2842-2853. PubMed ID: 34554918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VC-Net: Deep Volume-Composition Networks for Segmentation and Visualization of Highly Sparse and Noisy Image Data.
    Wang Y; Yan G; Zhu H; Buch S; Wang Y; Haacke EM; Hua J; Zhong Z
    IEEE Trans Vis Comput Graph; 2021 Feb; 27(2):1301-1311. PubMed ID: 33048701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Object recognition in medical images via anatomy-guided deep learning.
    Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA
    Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Theoretical Insight Into the Effect of Loss Function for Deep Semantic-Preserving Learning.
    Akbari A; Awais M; Bashar M; Kittler J
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):119-133. PubMed ID: 34283721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.