BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35157729)

  • 1. Land use classification of open-pit mine based on multi-scale segmentation and random forest model.
    Yu X; Zhang K; Zhang Y
    PLoS One; 2022; 17(2):e0263870. PubMed ID: 35157729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal segmentation scale selection and evaluation of cultivated land objects based on high-resolution remote sensing images with spectral and texture features.
    Lu H; Liu C; Li N; Fu X; Li L
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):27067-27083. PubMed ID: 33501583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forest tree species identification and its response to spatial scale based on multispectral and multi-resolution remotely sensed data.
    Xu KJ; Tian QJ; Yue JB; Tang SF
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3986-3994. PubMed ID: 30584725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of object-oriented remote sensing image classification based on different decision trees in forest area.
    Chen LP; Sun YJ
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3995-4003. PubMed ID: 30584726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scale Effect of Land Cover Classification from Multi-Resolution Satellite Remote Sensing Data.
    Li R; Gao X; Shi F; Zhang H
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate classification of land use and land cover using a boundary-specific two-level learning approach augmented with auxiliary features in Google Earth Engine.
    Selvaraj R; Amali D GB
    Environ Monit Assess; 2023 Oct; 195(11):1280. PubMed ID: 37804363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme.
    Cai G; Ren H; Yang L; Zhang N; Du M; Wu C
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31311138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index.
    Zhu D; Chen T; Zhen N; Niu R
    Environ Sci Pollut Res Int; 2020 May; 27(13):15716-15728. PubMed ID: 32086733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Land cover classification from multi-temporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks.
    Sharma A; Liu X; Yang X
    Neural Netw; 2018 Sep; 105():346-355. PubMed ID: 29933156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of the mercury mining site Almadén implementing remote sensing technologies.
    Schmid T; Rico C; Rodríguez-Rastrero M; José Sierra M; Javier Díaz-Puente F; Pelayo M; Millán R
    Environ Res; 2013 Aug; 125():92-102. PubMed ID: 23499516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping annual land disturbance and reclamation in rare-earth mining disturbance region using temporal trajectory segmentation.
    Wu Z; Li H; Wang Y
    Environ Sci Pollut Res Int; 2021 Dec; 28(48):69112-69128. PubMed ID: 34291411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.].
    Mao XG; Du ZH; Liu JQ; Chen SX; Hou JY
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):44-52. PubMed ID: 29692011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring forest dynamics with multi-scale and time series imagery.
    Huang C; Zhou Z; Wang D; Dian Y
    Environ Monit Assess; 2016 May; 188(5):273. PubMed ID: 27056478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Object based classification of a riparian environment using ultra-high resolution imagery, hierarchical landcover structures, and image texture.
    Kutz K; Cook Z; Linderman M
    Sci Rep; 2022 Jul; 12(1):11291. PubMed ID: 35789170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal changes in desertified land in rare earth mining areas under different disturbance conditions.
    Li Y; Li H; Xu F
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30323-30334. PubMed ID: 33587273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Test and Analysis of Vegetation Coverage in Open-Pit Phosphate Mining Area around Dianchi Lake Using UAV-VDVI.
    Luo W; Gan S; Yuan X; Gao S; Bi R; Hu L
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rule-based land use/land cover classification in coastal areas using seasonal remote sensing imagery: a case study from Lianyungang City, China.
    Yang X; Chen L; Li Y; Xi W; Chen L
    Environ Monit Assess; 2015 Jul; 187(7):449. PubMed ID: 26092241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote sensing monitoring of land damage and restoration in rare earth mining areas in 6 counties in southern Jiangxi based on multisource sequential images.
    Hengkai L; Feng X; Qin L
    J Environ Manage; 2020 Aug; 267():110653. PubMed ID: 32364134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmanned aerial system protocol for quarry restoration and mineral extraction monitoring.
    Carabassa V; Montero P; Crespo M; Padró JC; Pons X; Balagué J; Brotons L; Alcañiz JM
    J Environ Manage; 2020 Sep; 270():110717. PubMed ID: 32721284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Semi-Supervised Deep Rule-Based Approach for Complex Satellite Sensor Image Analysis.
    Gu X; Angelov PP; Zhang C; Atkinson PM
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2281-2292. PubMed ID: 33378259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.