BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35157900)

  • 1. Uniform rod and spherical nanocrystalline celluloses from hydrolysis of industrial pepper waste (Piper nigrum L.) using organic acid and inorganic acid.
    Holilah H; Bahruji H; Ediati R; Asranudin A; Jalil AA; Piluharto B; Nugraha RE; Prasetyoko D
    Int J Biol Macromol; 2022 Apr; 204():593-605. PubMed ID: 35157900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and Characterization of Nanocrystalline Cellulose Isolated from Pineapple Crown Leaf Fiber Agricultural Wastes Using Acid Hydrolysis.
    Fitriani F; Aprilia S; Arahman N; Bilad MR; Amin A; Huda N; Roslan J
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis.
    Zianor Azrina ZA; Beg MDH; Rosli MY; Ramli R; Junadi N; Alam AKMM
    Carbohydr Polym; 2017 Apr; 162():115-120. PubMed ID: 28224888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid.
    Liu Y; Wang H; Yu G; Yu Q; Li B; Mu X
    Carbohydr Polym; 2014 Sep; 110():415-22. PubMed ID: 24906774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk.
    Guo Y; Zhang Y; Zheng D; Li M; Yue J
    Int J Biol Macromol; 2020 Nov; 163():927-933. PubMed ID: 32640323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of different polymorphs of cellulose from different acid hydrolysis medium.
    Mahmud MM; Perveen A; Jahan RA; Matin MA; Wong SY; Li X; Arafat MT
    Int J Biol Macromol; 2019 Jun; 130():969-976. PubMed ID: 30844460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.
    Sun Y; Liu P; Liu Z
    Carbohydr Polym; 2016 May; 142():177-82. PubMed ID: 26917388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical Properties of Nanocellulose Isolated from Cotton Stalk Waste.
    Li M; He B; Chen Y; Zhao L
    ACS Omega; 2021 Oct; 6(39):25162-25169. PubMed ID: 34632175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of nanocrystalline cellulose from Acacia mangium and its reinforcement potential.
    Jasmani L; Adnan S
    Carbohydr Polym; 2017 Apr; 161():166-171. PubMed ID: 28189225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp.
    Xu Q; Gao Y; Qin M; Wu K; Fu Y; Zhao J
    Int J Biol Macromol; 2013 Sep; 60():241-7. PubMed ID: 23751318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in sustainable preparation of cellulose nanocrystals via solid acid hydrolysis: A mini-review.
    Wang Y; Liu H; Wang Q; An X; Ji X; Tian Z; Liu S; Yang G
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127353. PubMed ID: 37839592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent.
    Chen Q; Shi Y; Chen G; Cai M
    Int J Biol Macromol; 2020 Jan; 142():846-854. PubMed ID: 31622700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-chemical characteristics of nanocellulose at the variation of catalytic hydrolysis process.
    Rashid ESA; Gul A; Yehya WAH; Julkapli NM
    Heliyon; 2021 Jun; 7(6):e07267. PubMed ID: 34195407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A correlation on ultrasonication with nanocrystalline cellulose characteristics.
    Mohd Ishak NA; Khalil I; Abdullah FZ; Muhd Julkapli N
    Carbohydr Polym; 2020 Oct; 246():116553. PubMed ID: 32747237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction and characterization of nanocellulose from cattail leaves: Morphological, microstructural and thermal properties.
    Wu Y; Luo C; Wang T; Yang Y; Sun Y; Zhang Y; Cui L; Song Z; Chen X; Cao X; Li S; Cai G
    Int J Biol Macromol; 2024 Jan; 255():128123. PubMed ID: 37981275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and Production of Nanocrystalline Cellulose from Conocarpus Fiber.
    Khan A; Jawaid M; Kian LK; Khan AAP; Asiri AM
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34206136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films.
    Csiszar E; Kalic P; Kobol A; Ferreira Ede P
    Ultrason Sonochem; 2016 Jul; 31():473-80. PubMed ID: 26964974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features.
    Vasconcelos NF; Feitosa JP; da Gama FM; Morais JP; Andrade FK; de Souza Filho MS; Rosa MF
    Carbohydr Polym; 2017 Jan; 155():425-431. PubMed ID: 27702531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.