BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35157913)

  • 1. Sulforaphane regulates the proliferation of leukemia stem-like cells via Sonic Hedgehog signaling pathway.
    Wang F; Huang X; Sun Y; Li Z; Sun R; Zhao T; Wang M; Yan C; Liu P
    Eur J Pharmacol; 2022 Mar; 919():174824. PubMed ID: 35157913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway.
    Li SH; Fu J; Watkins DN; Srivastava RK; Shankar S
    Mol Cell Biochem; 2013 Jan; 373(1-2):217-27. PubMed ID: 23129257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.
    Rodova M; Fu J; Watkins DN; Srivastava RK; Shankar S
    PLoS One; 2012; 7(9):e46083. PubMed ID: 23029396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulforaphane inhibits gastric cancer stem cells via suppressing sonic hedgehog pathway.
    Ge M; Zhang L; Cao L; Xie C; Li X; Li Y; Meng Y; Chen Y; Wang X; Chen J; Zhang Q; Shao J; Zhong C
    Int J Food Sci Nutr; 2019 Aug; 70(5):570-578. PubMed ID: 30624124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway.
    Wang L; Tian Z; Yang Q; Li H; Guan H; Shi B; Hou P; Ji M
    Oncotarget; 2015 Sep; 6(28):25917-31. PubMed ID: 26312762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulforaphane inhibits self-renewal of lung cancer stem cells through the modulation of sonic Hedgehog signaling pathway and polyhomeotic homolog 3.
    Wang F; Sun Y; Huang X; Qiao C; Zhang W; Liu P; Wang M
    AMB Express; 2021 Aug; 11(1):121. PubMed ID: 34424425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells.
    Li Y; Zhang T; Korkaya H; Liu S; Lee HF; Newman B; Yu Y; Clouthier SG; Schwartz SJ; Wicha MS; Sun D
    Clin Cancer Res; 2010 May; 16(9):2580-90. PubMed ID: 20388854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways.
    Bijangi-Vishehsaraei K; Reza Saadatzadeh M; Wang H; Nguyen A; Kamocka MM; Cai W; Cohen-Gadol AA; Halum SL; Sarkaria JN; Pollok KE; Safa AR
    J Neurosurg; 2017 Dec; 127(6):1219-1230. PubMed ID: 28059653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulforaphane-cisplatin combination inhibits the stemness and metastatic potential of TNBCs via down regulation of sirtuins-mediated EMT signaling axis.
    Sinha S; Sharma S; Sharma A; Vora J; Shrivastava N
    Phytomedicine; 2021 Apr; 84():153492. PubMed ID: 33640782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Nrf2 by Sulforaphane Inhibits High Glucose-Induced Progression of Pancreatic Cancer via AMPK Dependent Signaling.
    Chen X; Jiang Z; Zhou C; Chen K; Li X; Wang Z; Wu Z; Ma J; Ma Q; Duan W
    Cell Physiol Biochem; 2018; 50(3):1201-1215. PubMed ID: 30355942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer.
    Simões BM; Santiago-Gómez A; Chiodo C; Moreira T; Conole D; Lovell S; Alferez D; Eyre R; Spence K; Sarmiento-Castro A; Kohler B; Morisset L; Lanzino M; Andò S; Marangoni E; Sims AH; Tate EW; Howell SJ; Clarke RB
    Oncogene; 2020 Jun; 39(25):4896-4908. PubMed ID: 32472077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulforaphane Inhibits c-Myc-Mediated Prostate Cancer Stem-Like Traits.
    Vyas AR; Moura MB; Hahm ER; Singh KB; Singh SV
    J Cell Biochem; 2016 Nov; 117(11):2482-95. PubMed ID: 26990292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NRF2/SHH signaling cascade promotes tumor-initiating cell lineage and drug resistance in hepatocellular carcinoma.
    Leung HW; Lau EYT; Leung CON; Lei MML; Mok EHK; Ma VWS; Cho WCS; Ng IOL; Yun JP; Cai SH; Yu HJ; Ma S; Lee TKW
    Cancer Lett; 2020 Apr; 476():48-56. PubMed ID: 32061952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralized and GSH-responsive hyaluronic acid based nano-carriers for potentiating repressive effects of sulforaphane on breast cancer stem cells-like properties.
    Gu HF; Ren F; Mao XY; Du M
    Carbohydr Polym; 2021 Oct; 269():118294. PubMed ID: 34294320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular changes associated with the anticancer effect of sulforaphane against Ehrlich solid tumour in mice.
    Abouzed TK; Beltagy ER; Kahilo KA; Ibrahim WM
    J Biochem Mol Toxicol; 2021 Feb; 35(2):e22655. PubMed ID: 33094879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulforaphane inhibits PRMT5 and MEP50 function to suppress the mesothelioma cancer cell phenotype.
    Ezeka G; Adhikary G; Kandasamy S; Friedberg JS; Eckert RL
    Mol Carcinog; 2021 Jul; 60(7):429-439. PubMed ID: 33872411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoencapsulation of sulforaphane in broccoli membrane vesicles and their
    Yepes-Molina L; Carvajal M
    Pharm Biol; 2021 Dec; 59(1):1490-1504. PubMed ID: 34714214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of baicalein on pancreatic cancer stem cells via modulation of sonic Hedgehog pathway.
    Song L; Chen X; Wang P; Gao S; Qu C; Liu L
    Acta Biochim Biophys Sin (Shanghai); 2018 Jun; 50(6):586-596. PubMed ID: 29697746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTOR inhibitor PP242 increases antitumor activity of sulforaphane by blocking Akt/mTOR pathway in esophageal squamous cell carcinoma.
    Lu Z; Zhang Y; Xu Y; Wei H; Zhao W; Wang P; Li Y; Hou G
    Mol Biol Rep; 2022 Jan; 49(1):451-461. PubMed ID: 34731371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonic hedgehog signalling regulates the self-renewal and proliferation of skin-derived precursor cells in mice.
    Park S; Kim H; Kim K; Roh S
    Cell Prolif; 2018 Dec; 51(6):e12500. PubMed ID: 30151845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.