These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35157941)
1. The essential cysteines in the CIPC motif of the thioredoxin-like Trypanosoma brucei MICOS subunit TbMic20 do not form an intramolecular disulfide bridge in vivo. Kaurov I; Heller J; Deisenhammer S; Potěšil D; Zdráhal Z; Hashimi H Mol Biochem Parasitol; 2022 Mar; 248():111463. PubMed ID: 35157941 [TBL] [Abstract][Full Text] [Related]
2. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Mordas A; Tokatlidis K Acc Chem Res; 2015 Aug; 48(8):2191-9. PubMed ID: 26214018 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Wrobel L; Trojanowska A; Sztolsztener ME; Chacinska A Mol Biol Cell; 2013 Mar; 24(5):543-54. PubMed ID: 23283984 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. Terziyska N; Grumbt B; Kozany C; Hell K J Biol Chem; 2009 Jan; 284(3):1353-63. PubMed ID: 19011240 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Gross DP; Burgard CA; Reddehase S; Leitch JM; Culotta VC; Hell K Mol Biol Cell; 2011 Oct; 22(20):3758-67. PubMed ID: 21865601 [TBL] [Abstract][Full Text] [Related]
6. Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol. Klöppel C; Suzuki Y; Kojer K; Petrungaro C; Longen S; Fiedler S; Keller S; Riemer J Mol Biol Cell; 2011 Oct; 22(20):3749-57. PubMed ID: 21865594 [TBL] [Abstract][Full Text] [Related]
7. Role of twin Cys-Xaa9-Cys motif cysteines in mitochondrial import of the cytochrome C oxidase biogenesis factor Cmc1. Bourens M; Dabir DV; Tienson HL; Sorokina I; Koehler CM; Barrientos A J Biol Chem; 2012 Sep; 287(37):31258-69. PubMed ID: 22767599 [TBL] [Abstract][Full Text] [Related]
8. In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins. Böttinger L; Gornicka A; Czerwik T; Bragoszewski P; Loniewska-Lwowska A; Schulze-Specking A; Truscott KN; Guiard B; Milenkovic D; Chacinska A Mol Biol Cell; 2012 Oct; 23(20):3957-69. PubMed ID: 22918950 [TBL] [Abstract][Full Text] [Related]
9. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Sztolsztener ME; Brewinska A; Guiard B; Chacinska A Traffic; 2013 Mar; 14(3):309-20. PubMed ID: 23186364 [TBL] [Abstract][Full Text] [Related]
10. The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria. Lionaki E; Aivaliotis M; Pozidis C; Tokatlidis K Antioxid Redox Signal; 2010 Nov; 13(9):1327-39. PubMed ID: 20367271 [TBL] [Abstract][Full Text] [Related]
11. The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module. Eichenberger C; Oeljeklaus S; Bruggisser J; Mani J; Haenni B; Kaurov I; Niemann M; Zuber B; Lukeš J; Hashimi H; Warscheid B; Schimanski B; Schneider A Mol Microbiol; 2019 Dec; 112(6):1731-1743. PubMed ID: 31541487 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles. Ang SK; Zhang M; Lodi T; Lu H Biochem J; 2014 Jun; 460(2):199-210. PubMed ID: 24625320 [TBL] [Abstract][Full Text] [Related]
13. Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria. Koch JR; Schmid FX J Mol Biol; 2014 Dec; 426(24):4087-4098. PubMed ID: 25451030 [TBL] [Abstract][Full Text] [Related]
14. Mia40 Protein Serves as an Electron Sink in the Mia40-Erv1 Import Pathway. Neal SE; Dabir DV; Tienson HL; Horn DM; Glaeser K; Ogozalek Loo RR; Barrientos A; Koehler CM J Biol Chem; 2015 Aug; 290(34):20804-20814. PubMed ID: 26085103 [TBL] [Abstract][Full Text] [Related]
15. The Diverged Trypanosome MICOS Complex as a Hub for Mitochondrial Cristae Shaping and Protein Import. Kaurov I; Vancová M; Schimanski B; Cadena LR; Heller J; Bílý T; Potěšil D; Eichenberger C; Bruce H; Oeljeklaus S; Warscheid B; Zdráhal Z; Schneider A; Lukeš J; Hashimi H Curr Biol; 2018 Nov; 28(21):3393-3407.e5. PubMed ID: 30415698 [TBL] [Abstract][Full Text] [Related]
16. A disulfide relay system in mitochondria. Tokatlidis K Cell; 2005 Jul; 121(7):965-7. PubMed ID: 15989945 [TBL] [Abstract][Full Text] [Related]
17. Development of the Mitochondrial Intermembrane Space Disulfide Relay Represents a Critical Step in Eukaryotic Evolution. Backes S; Garg SG; Becker L; Peleh V; Glockshuber R; Gould SB; Herrmann JM Mol Biol Evol; 2019 Apr; 36(4):742-756. PubMed ID: 30668797 [TBL] [Abstract][Full Text] [Related]
18. Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. Gabriel K; Milenkovic D; Chacinska A; Müller J; Guiard B; Pfanner N; Meisinger C J Mol Biol; 2007 Jan; 365(3):612-20. PubMed ID: 17095012 [TBL] [Abstract][Full Text] [Related]
19. Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40. Milenkovic D; Gabriel K; Guiard B; Schulze-Specking A; Pfanner N; Chacinska A J Biol Chem; 2007 Aug; 282(31):22472-80. PubMed ID: 17553782 [TBL] [Abstract][Full Text] [Related]
20. Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space. Sideris DP; Tokatlidis K Mol Microbiol; 2007 Sep; 65(5):1360-73. PubMed ID: 17680986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]