These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35158140)

  • 21. Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh.
    Wu D; Sun DW
    Talanta; 2013 Nov; 116():266-76. PubMed ID: 24148403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content.
    Sun Y; Wang Y; Xiao H; Gu X; Pan L; Tu K
    Food Chem; 2017 Nov; 235():194-202. PubMed ID: 28554626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maturity Prediction in Yellow Peach (
    Scalisi A; Pelliccia D; O'Connell MG
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an artificial neural network as a tool for predicting the chemical attributes of fresh peach fruits.
    Abdel-Sattar M; Al-Obeed RS; Aboukarima AM; Eshra DH
    PLoS One; 2021; 16(7):e0251185. PubMed ID: 34329308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging.
    Gao Q; Wang P; Niu T; He D; Wang M; Yang H; Zhao X
    Food Chem; 2022 Feb; 370():131013. PubMed ID: 34509150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of visible/NIR spectroscopy for the estimation of soluble solids, dry matter and flesh firmness in stone fruits.
    Scalisi A; O'Connell MG
    J Sci Food Agric; 2021 Mar; 101(5):2100-2107. PubMed ID: 32978810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network.
    Pan L; Zhang Q; Zhang W; Sun Y; Hu P; Tu K
    Food Chem; 2016 Feb; 192():134-41. PubMed ID: 26304330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-destructive detection of kiwifruit soluble solid content based on hyperspectral and fluorescence spectral imaging.
    Xu L; Chen Y; Wang X; Chen H; Tang Z; Shi X; Chen X; Wang Y; Kang Z; Zou Z; Huang P; He Y; Yang N; Zhao Y
    Front Plant Sci; 2022; 13():1075929. PubMed ID: 36743568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperspectral imaging for predicting the allicin and soluble solid content of garlic with variable selection algorithms and chemometric models.
    Rahman A; Faqeerzada MA; Cho BK
    J Sci Food Agric; 2018 Sep; 98(12):4715-4725. PubMed ID: 29542139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Orientations and Regions on Performance of Online Soluble Solids Content Prediction Models Based on Near-Infrared Spectroscopy for Peaches.
    Liu S; Huang W; Lin L; Fan S
    Foods; 2022 May; 11(10):. PubMed ID: 35627072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system.
    Wu D; Shi H; Wang S; He Y; Bao Y; Liu K
    Anal Chim Acta; 2012 May; 726():57-66. PubMed ID: 22541014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage.
    Yao K; Sun J; Cheng J; Xu M; Chen C; Zhou X; Dai C
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of fruit maturity and its prediction model based on the pericarp index of absorbance difference (IAD) for peaches.
    Zhang B; Peng B; Zhang C; Song Z; Ma R
    PLoS One; 2017; 12(5):e0177511. PubMed ID: 28505165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-destructive prediction and visualization of anthocyanin content in mulberry fruits using hyperspectral imaging.
    Li X; Wei Z; Peng F; Liu J; Han G
    Front Plant Sci; 2023; 14():1137198. PubMed ID: 37051079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Micro-Damage Detection Method of Litchi Fruit Using Hyperspectral Imaging Technology.
    Xiong J; Lin R; Bu R; Liu Z; Yang Z; Yu L
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein content prediction of rice grains based on hyperspectral imaging.
    Xuan G; Jia H; Shao Y; Shi C
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 320():124589. PubMed ID: 38850826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging.
    Xie C; Chu B; He Y
    Food Chem; 2018 Apr; 245():132-140. PubMed ID: 29287354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research on Defect Detection in Kubo Peach Based on Hyperspectral Imaging Technology Combined with CARS-MIV-GA-SVM Method.
    Zhang L; Nie P; Zhang S; Zhang L; Sun T
    Foods; 2023 Sep; 12(19):. PubMed ID: 37835246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination and Visualization of Peimine and Peiminine Content in Fritillaria thunbergii Bulbi Treated by Sulfur Fumigation Using Hyperspectral Imaging with Chemometrics.
    He J; He Y; Zhang AC
    Molecules; 2017 Aug; 22(9):. PubMed ID: 28832506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.