BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35158853)

  • 1. Expression of 3-Methylcrotonyl-CoA Carboxylase in Brain Tumors and Capability to Catabolize Leucine by Human Neural Cancer Cells.
    Gondáš E; Kráľová Trančíková A; Baranovičová E; Šofranko J; Hatok J; Kowtharapu BS; Galanda T; Dobrota D; Kubatka P; Busselberg D; Murín R
    Cancers (Basel); 2022 Jan; 14(3):. PubMed ID: 35158853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal metabolic model for 3-methylcrotonyl-CoA carboxylase deficiency.
    Rodríguez JM; Ruíz-Sala P; Ugarte M; Peñalva MA
    J Biol Chem; 2004 Feb; 279(6):4578-87. PubMed ID: 14612443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunocytochemical localization of beta-methylcrotonyl-CoA carboxylase in astroglial cells and neurons in culture.
    Bixel MG; Hamprecht B
    J Neurochem; 2000 Mar; 74(3):1059-67. PubMed ID: 10693937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of leucine in fibroblasts from patients with deficiencies in each of the major catabolic enzymes: branched-chain ketoacid dehydrogenase, isovaleryl-CoA dehydrogenase, 3-methylcrotonyl-CoA carboxylase, 3-methylglutaconyl-CoA hydratase, and 3-hydroxy-3-methylglutaryl-CoA lyase.
    Yoshida I; Søvik O; Sweetman L; Nyhan WL
    J Neurogenet; 1985 Dec; 2(6):413-24. PubMed ID: 3841150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3-methylcrotonyl-CoA carboxylase deficient human skin fibroblast transcriptome reveals underlying mitochondrial dysfunction and oxidative stress.
    Zandberg L; van Dyk HC; van der Westhuizen FH; van Dijk AA
    Int J Biochem Cell Biol; 2016 Sep; 78():116-129. PubMed ID: 27417235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of ketone bodies from leucine by cultured astroglial cells.
    Bixel MG; Hamprecht B
    J Neurochem; 1995 Dec; 65(6):2450-61. PubMed ID: 7595539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical localization of 3-methylcrotonyl-CoA carboxylase in cultured ependymal, microglial and oligodendroglial cells.
    Murín R; Verleysdonk S; Rapp M; Hamprecht B
    J Neurochem; 2006 Jun; 97(5):1393-402. PubMed ID: 16696850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of 3-methylcrotonyl-CoA carboxylase explains the increased excretion of 3-hydroxyisovaleric acid in valproate-treated patients.
    Luís PB; Ruiter JP; IJlst L; Diogo L; Garcia P; de Almeida IT; Duran M; Wanders RJ; Silva MF
    J Inherit Metab Dis; 2012 May; 35(3):443-9. PubMed ID: 22189597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase.
    McKean AL; Ke J; Song J; Che P; Achenbach S; Nikolau BJ; Wurtele ES
    J Biol Chem; 2000 Feb; 275(8):5582-90. PubMed ID: 10681539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of [U-(13)C]leucine in cultured astroglial cells.
    Bixel MG; Engelmann J; Willker W; Hamprecht B; Leibfritz D
    Neurochem Res; 2004 Nov; 29(11):2057-67. PubMed ID: 15662840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-Methylcrotonyl-coenzyme A carboxylase is a component of the mitochondrial leucine catabolic pathway in plants.
    Anderson MD; Che P; Song J; Nikolau BJ; Wurtele ES
    Plant Physiol; 1998 Dec; 118(4):1127-38. PubMed ID: 9847087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of branched-chain amino acid degradation by ketone bodies.
    Landaas S
    Scand J Clin Lab Invest; 1977 Sep; 37(5):411-8. PubMed ID: 929096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic beta-cell nutrient signaling.
    Brun T; Roche E; Assimacopoulos-Jeannet F; Corkey BE; Kim KH; Prentki M
    Diabetes; 1996 Feb; 45(2):190-8. PubMed ID: 8549864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in Pseudomonas aeruginosa.
    Höschle B; Gnau V; Jendrossek D
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3649-3656. PubMed ID: 16272386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant biotin-containing carboxylases.
    Nikolau BJ; Ohlrogge JB; Wurtele ES
    Arch Biochem Biophys; 2003 Jun; 414(2):211-22. PubMed ID: 12781773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and degradation of biotin-containing carboxylases in human cell lines.
    Chandler CS; Ballard FJ
    Biochem J; 1985 Dec; 232(2):385-93. PubMed ID: 2868710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes.
    Collado MS; Armstrong AJ; Olson M; Hoang SA; Day N; Summar M; Chapman KA; Reardon J; Figler RA; Wamhoff BR
    Mol Genet Metab; 2020 Jul; 130(3):183-196. PubMed ID: 32451238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of biotin and 3-methylcrotonyl-coenzyme a carboxylase in higher plant mitochondria.
    Baldet P; Alban C; Axiotis S; Douce R
    Plant Physiol; 1992 Jun; 99(2):450-5. PubMed ID: 16668906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in
    Lyu M; Cheng Y; Han X; Wen Y; Song Y; Li J; Chen Z
    Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32303550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.