BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35158914)

  • 1. Cancer-on-a-Chip: Models for Studying Metastasis.
    Zhang X; Karim M; Hasan MM; Hooper J; Wahab R; Roy S; Al-Hilal TA
    Cancers (Basel); 2022 Jan; 14(3):. PubMed ID: 35158914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening.
    Brooks A; Zhang Y; Chen J; Zhao CX
    Adv Healthc Mater; 2024 Jan; ():e2302436. PubMed ID: 38224141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Microfluidic Platforms for the Assessment of Breast Cancer Metastasis.
    Sigdel I; Gupta N; Faizee F; Khare VM; Tiwari AK; Tang Y
    Front Bioeng Biotechnol; 2021; 9():633671. PubMed ID: 33777909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a cancer metastasis-on-chip assay for high throughput drug screening.
    Ozer LY; Fayed HS; Ericsson J; Al Haj Zen A
    Front Oncol; 2023; 13():1269376. PubMed ID: 38239643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model.
    Liu W; Song J; Du X; Zhou Y; Li Y; Li R; Lyu L; He Y; Hao J; Ben J; Wang W; Shi H; Wang Q
    Acta Biomater; 2019 Jun; 91():195-208. PubMed ID: 31034948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis.
    Shin MK; Kim SK; Jung H
    Lab Chip; 2011 Nov; 11(22):3880-7. PubMed ID: 21975823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip.
    Lin Z; Luo G; Du W; Kong T; Liu C; Liu Z
    Small; 2020 Mar; 16(9):e1903899. PubMed ID: 31747120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic vascular models of tumor cell extravasation.
    Kim S; Wan Z; Jeon JS; Kamm RD
    Front Oncol; 2022; 12():1052192. PubMed ID: 36439519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis.
    Xu X; Jiang Z; Wang J; Ren Y; Wu A
    Electrophoresis; 2020 Jun; 41(10-11):933-951. PubMed ID: 32144938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Channel Compartmentalized Microfluidic Chip for Real-Time Monitoring of the Metastatic Cascade.
    Mollica H; Palomba R; Primavera R; Decuzzi P
    ACS Biomater Sci Eng; 2019 Sep; 5(9):4834-4843. PubMed ID: 33448826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies.
    Hakim M; Kermanshah L; Abouali H; Hashemi HM; Yari A; Khorasheh F; Alemzadeh I; Vossoughi M
    Biophys Rev; 2022 Apr; 14(2):517-543. PubMed ID: 35528034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment.
    Portillo-Lara R; Annabi N
    Lab Chip; 2016 Oct; 16(21):4063-4081. PubMed ID: 27605305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches.
    Sleeboom JJF; Eslami Amirabadi H; Nair P; Sahlgren CM; den Toonder JMJ
    Dis Model Mech; 2018 Mar; 11(3):. PubMed ID: 29555848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis.
    Slay EE; Meldrum FC; Pensabene V; Amer MH
    Front Med Technol; 2021; 3():722501. PubMed ID: 35047952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-on-chip modeling of organ-specific cancer and metastasis.
    Del Piccolo N; Shirure VS; Bi Y; Goedegebuure SP; Gholami S; Hughes CCW; Fields RC; George SC
    Adv Drug Deliv Rev; 2021 Aug; 175():113798. PubMed ID: 34015419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation.
    Lee H; Park W; Ryu H; Jeon NL
    Biomicrofluidics; 2014 Sep; 8(5):054102. PubMed ID: 25332739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion.
    Toh YC; Raja A; Yu H; van Noort D
    Bioengineering (Basel); 2018 Apr; 5(2):. PubMed ID: 29642502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip modeling of tumor evolution: Advances, challenges and opportunities.
    Li C; Holman JB; Shi Z; Qiu B; Ding W
    Mater Today Bio; 2023 Aug; 21():100724. PubMed ID: 37483380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Models of Metastasis with Application to Study Cancer Biomechanics.
    Chen MB; Kamm RD; Moeendarbary E
    Adv Exp Med Biol; 2018; 1092():189-207. PubMed ID: 30368754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.