These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 35159251)
1. Use of CRISPR/Cas9-Based Gene Editing to Simultaneously Mutate Multiple Homologous Genes Required for Pollen Development and Male Fertility in Maize. Liu X; Zhang S; Jiang Y; Yan T; Fang C; Hou Q; Wu S; Xie K; An X; Wan X Cells; 2022 Jan; 11(3):. PubMed ID: 35159251 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Jiang Y; An X; Li Z; Yan T; Zhu T; Xie K; Liu S; Hou Q; Zhao L; Wu S; Liu X; Zhang S; He W; Li F; Li J; Wan X Plant Biotechnol J; 2021 Sep; 19(9):1769-1784. PubMed ID: 33772993 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9-based genome editing of 14 lipid metabolic genes reveals a sporopollenin metabolon ZmPKSB-ZmTKPR1-1/-2 required for pollen exine formation in maize. An X; Zhang S; Jiang Y; Liu X; Fang C; Wang J; Zhao L; Hou Q; Zhang J; Wan X Plant Biotechnol J; 2024 Jan; 22(1):216-232. PubMed ID: 37792967 [TBL] [Abstract][Full Text] [Related]
4. Map-Based Cloning, Phylogenetic, and Microsynteny Analyses of Wang Y; Liu D; Tian Y; Wu S; An X; Dong Z; Zhang S; Bao J; Li Z; Li J; Wan X Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30897816 [TBL] [Abstract][Full Text] [Related]
5. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. Wan X; Wu S; Li Z; Dong Z; An X; Ma B; Tian Y; Li J Mol Plant; 2019 Mar; 12(3):321-342. PubMed ID: 30690174 [TBL] [Abstract][Full Text] [Related]
6. ZmMs30 Encoding a Novel GDSL Lipase Is Essential for Male Fertility and Valuable for Hybrid Breeding in Maize. An X; Dong Z; Tian Y; Xie K; Wu S; Zhu T; Zhang D; Zhou Y; Niu C; Ma B; Hou Q; Bao J; Zhang S; Li Z; Wang Y; Yan T; Sun X; Zhang Y; Li J; Wan X Mol Plant; 2019 Mar; 12(3):343-359. PubMed ID: 30684599 [TBL] [Abstract][Full Text] [Related]
7. Genetic Structure and Molecular Mechanisms Underlying the Formation of Tassel, Anther, and Pollen in the Male Inflorescence of Maize ( Wang Y; Bao J; Wei X; Wu S; Fang C; Li Z; Qi Y; Gao Y; Dong Z; Wan X Cells; 2022 May; 11(11):. PubMed ID: 35681448 [TBL] [Abstract][Full Text] [Related]
8. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. Wan X; Wu S; Li Z; An X; Tian Y Mol Plant; 2020 Jul; 13(7):955-983. PubMed ID: 32434071 [TBL] [Abstract][Full Text] [Related]
9. Molecular regulation of An X; Ma B; Duan M; Dong Z; Liu R; Yuan D; Hou Q; Wu S; Zhang D; Liu D; Yu D; Zhang Y; Xie K; Zhu T; Li Z; Zhang S; Tian Y; Liu C; Li J; Yuan L; Wan X Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23499-23509. PubMed ID: 32907946 [TBL] [Abstract][Full Text] [Related]
10. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Xie K; Wu S; Li Z; Zhou Y; Zhang D; Dong Z; An X; Zhu T; Zhang S; Liu S; Li J; Wan X Theor Appl Genet; 2018 Jun; 131(6):1363-1378. PubMed ID: 29546443 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. Li J; Wang Z; He G; Ma L; Deng XW J Genet Genomics; 2020 May; 47(5):263-272. PubMed ID: 32694014 [TBL] [Abstract][Full Text] [Related]
12. Expediting Next-Generation Hybrid Technology in Recalcitrant Maize Inbreds through In Vivo Targeted Activity of CRISPR/Cas9. Hou L; Xiao B; Zhu J; Liu C; Wu Q; Xie C; Zou H; Qi X Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892019 [TBL] [Abstract][Full Text] [Related]
13. MS26/CYP704B is required for anther and pollen wall development in bread wheat (Triticum aestivum L.) and combining mutations in all three homeologs causes male sterility. Singh M; Kumar M; Thilges K; Cho MJ; Cigan AM PLoS One; 2017; 12(5):e0177632. PubMed ID: 28520767 [TBL] [Abstract][Full Text] [Related]
14. Triphasic regulation of ZmMs13 encoding an ABCG transporter is sequentially required for callose dissolution, pollen exine and anther cuticle formation in maize. Fang C; Wu S; Niu C; Hou Q; An X; Wei X; Zhao L; Jiang Y; Liu X; Wan X J Adv Res; 2023 Jul; 49():15-30. PubMed ID: 36130683 [TBL] [Abstract][Full Text] [Related]
15. Huo Y; Pei Y; Tian Y; Zhang Z; Li K; Liu J; Xiao S; Chen H; Liu J Plant Physiol; 2020 Nov; 184(3):1438-1454. PubMed ID: 32913046 [TBL] [Abstract][Full Text] [Related]
16. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Singh M; Kumar M; Albertsen MC; Young JK; Cigan AM Plant Mol Biol; 2018 Jul; 97(4-5):371-383. PubMed ID: 29959585 [TBL] [Abstract][Full Text] [Related]
17. Development of Commercial Thermo-sensitive Genic Male Sterile Rice Accelerates Hybrid Rice Breeding Using the CRISPR/Cas9-mediated TMS5 Editing System. Zhou H; He M; Li J; Chen L; Huang Z; Zheng S; Zhu L; Ni E; Jiang D; Zhao B; Zhuang C Sci Rep; 2016 Nov; 6():37395. PubMed ID: 27874087 [TBL] [Abstract][Full Text] [Related]
18. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. Barman HN; Sheng Z; Fiaz S; Zhong M; Wu Y; Cai Y; Wang W; Jiao G; Tang S; Wei X; Hu P BMC Plant Biol; 2019 Mar; 19(1):109. PubMed ID: 30894127 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9-Induced Mutagenesis of Fang Y; Yang J; Guo X; Qin Y; Zhou H; Liao S; Liu F; Qin B; Zhuang C; Li R Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955484 [TBL] [Abstract][Full Text] [Related]
20. Single and multiple gene knockouts by CRISPR-Cas9 in maize. Doll NM; Gilles LM; Gérentes MF; Richard C; Just J; Fierlej Y; Borrelli VMG; Gendrot G; Ingram GC; Rogowsky PM; Widiez T Plant Cell Rep; 2019 Apr; 38(4):487-501. PubMed ID: 30684023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]