These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 35159319)

  • 1. Common Themes and Future Challenges in Understanding Gene Regulatory Network Evolution.
    Schember I; Halfon MS
    Cells; 2022 Feb; 11(3):. PubMed ID: 35159319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redeployment of a conserved gene regulatory network during Aedes aegypti development.
    Suryamohan K; Hanson C; Andrews E; Sinha S; Scheel MD; Halfon MS
    Dev Biol; 2016 Aug; 416(2):402-13. PubMed ID: 27341759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread cis- and trans-regulatory evolution underlies the origin, diversification, and loss of a sexually dimorphic fruit fly pigmentation trait.
    Hughes JT; Williams ME; Rebeiz M; Williams TM
    J Exp Zool B Mol Dev Evol; 2023 Mar; 340(2):143-161. PubMed ID: 34254440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cis-regulatory evolution integrated the Bric-à-brac transcription factors into a novel fruit fly gene regulatory network.
    Roeske MJ; Camino EM; Grover S; Rebeiz M; Williams TM
    Elife; 2018 Jan; 7():. PubMed ID: 29297463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives on Gene Regulatory Network Evolution.
    Halfon MS
    Trends Genet; 2017 Jul; 33(7):436-447. PubMed ID: 28528721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel role for trithorax in the gene regulatory network for a rapidly evolving fruit fly pigmentation trait.
    Weinstein ML; Jaenke CM; Asma H; Spangler M; Kohnen KA; Konys CC; Williams ME; Williams AV; Rebeiz M; Halfon MS; Williams TM
    PLoS Genet; 2023 Feb; 19(2):e1010653. PubMed ID: 36795790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution.
    Kittelmann S; Buffry AD; Franke FA; Almudi I; Yoth M; Sabaris G; Couso JP; Nunes MDS; Frankel N; Gómez-Skarmeta JL; Pueyo-Marques J; Arif S; McGregor AP
    PLoS Genet; 2018 May; 14(5):e1007375. PubMed ID: 29723190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal flexibility of gene regulatory network underlies a novel wing pattern in flies.
    Dufour HD; Koshikawa S; Finet C
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11589-11596. PubMed ID: 32393634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?
    Jiggins CD; Wallbank RW; Hanly JJ
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of yellow gene regulation and pigmentation in Drosophila.
    Wittkopp PJ; Vaccaro K; Carroll SB
    Curr Biol; 2002 Sep; 12(18):1547-56. PubMed ID: 12372246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expansion of body coloration involves coordinated evolution in cis and trans within the pigmentation regulatory network of Drosophila prostipennis.
    Ordway AJ; Hancuch KN; Johnson W; Wiliams TM; Rebeiz M
    Dev Biol; 2014 Aug; 392(2):431-40. PubMed ID: 24907418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies.
    Supple MA; Hines HM; Dasmahapatra KK; Lewis JJ; Nielsen DM; Lavoie C; Ray DA; Salazar C; McMillan WO; Counterman BA
    Genome Res; 2013 Aug; 23(8):1248-57. PubMed ID: 23674305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modularity and hierarchy in biological systems: Using gene regulatory networks to understand evolutionary change.
    Hatleberg WL; Hinman VF
    Curr Top Dev Biol; 2021; 141():39-73. PubMed ID: 33602494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular cis-regulatory logic of yellow gene expression in silkmoth larvae.
    Suzuki TK; Koshikawa S; Kobayashi I; Uchino K; Sezutsu H
    Insect Mol Biol; 2019 Aug; 28(4):568-577. PubMed ID: 30737958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation.
    Rogers WA; Grover S; Stringer SJ; Parks J; Rebeiz M; Williams TM
    Dev Biol; 2014 Jan; 385(2):417-32. PubMed ID: 24269556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.
    Rebeiz M; Patel NH; Hinman VF
    Annu Rev Genomics Hum Genet; 2015; 16():103-31. PubMed ID: 26079281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution.
    Koshikawa S
    Dev Growth Differ; 2020 Jun; 62(5):269-278. PubMed ID: 32171022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development.
    Doroshkov AV; Konstantinov DK; Afonnikov DA; Gunbin KV
    BMC Plant Biol; 2019 Feb; 19(Suppl 1):53. PubMed ID: 30813891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties.
    Ouma WZ; Pogacar K; Grotewold E
    PLoS Comput Biol; 2018 Apr; 14(4):e1006098. PubMed ID: 29708965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.