These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 35159515)
1. The Acrylamide Degradation by Probiotic Strain Petka K; Sroka P; Tarko T; Duda-Chodak A Foods; 2022 Jan; 11(3):. PubMed ID: 35159515 [TBL] [Abstract][Full Text] [Related]
2. Physical, Chemical, Microbiological and Sensory Characteristics of a Probiotic Beverage Produced from Different Mixtures of Cow's Milk and Soy Beverage by Šertović E; Sarić Z; Barać M; Barukčić I; Kostić A; Božanić R Food Technol Biotechnol; 2019 Dec; 57(4):461-471. PubMed ID: 32123508 [TBL] [Abstract][Full Text] [Related]
3. The Utilisation of Acrylamide by Selected Microorganisms Used for Fermentation of Food. Petka K; Wajda Ł; Duda-Chodak A Toxics; 2021 Nov; 9(11):. PubMed ID: 34822686 [TBL] [Abstract][Full Text] [Related]
4. Growth and metabolism of selected strains of probiotic bacteria in milk. Østlie HM; Helland MH; Narvhus JA Int J Food Microbiol; 2003 Oct; 87(1-2):17-27. PubMed ID: 12927703 [TBL] [Abstract][Full Text] [Related]
5. Growth and metabolism of selected strains of probiotic bacteria, in maize porridge with added malted barley. Helland MH; Wicklund T; Narvhus JA Int J Food Microbiol; 2004 Mar; 91(3):305-13. PubMed ID: 14984778 [TBL] [Abstract][Full Text] [Related]
6. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk. Do Carmo AP; De Oliveira MN; Da Silva DF; Castro SB; Borges AC; De Carvalho AF; De Moraes CA Benef Microbes; 2012 Mar; 3(1):23-32. PubMed ID: 22348906 [TBL] [Abstract][Full Text] [Related]
7. Fermentation of reconstituted skim milk supplemented with soy protein isolate by probiotic organisms. Pham TT; Shah NP J Food Sci; 2008 Mar; 73(2):M62-6. PubMed ID: 18298737 [TBL] [Abstract][Full Text] [Related]
8. Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Petka K; Tarko T; Duda-Chodak A Nutrients; 2020 Apr; 12(4):. PubMed ID: 32326187 [TBL] [Abstract][Full Text] [Related]
9. Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing. Sodini I; Lucas A; Oliveira MN; Remeuf F; Corrieu G J Dairy Sci; 2002 Oct; 85(10):2479-88. PubMed ID: 12416799 [TBL] [Abstract][Full Text] [Related]
10. Development of Yoghurt with Juçara Pulp (Euterpe edulis M.) and the Probiotic Lactobacillus acidophilus La5. Geraldi MV; Tulini FL; Souza VM; De Martinis ECP Probiotics Antimicrob Proteins; 2018 Mar; 10(1):71-76. PubMed ID: 28432677 [TBL] [Abstract][Full Text] [Related]
11. Functional fermented whey-based beverage using lactic acid bacteria. Pescuma M; Hébert EM; Mozzi F; de Valdez GF Int J Food Microbiol; 2010 Jun; 141(1-2):73-81. PubMed ID: 20483186 [TBL] [Abstract][Full Text] [Related]
13. Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts. Costa MP; Frasao BS; Silva AC; Freitas MQ; Franco RM; Conte-Junior CA J Dairy Sci; 2015 Sep; 98(9):5995-6003. PubMed ID: 26188580 [TBL] [Abstract][Full Text] [Related]
14. The nutrient requirements of Lactobacillus acidophilus LA-5 and their application to fermented milk. Meng L; Li S; Liu G; Fan X; Qiao Y; Zhang A; Lin Y; Zhao X; Huang K; Feng Z J Dairy Sci; 2021 Jan; 104(1):138-150. PubMed ID: 33131816 [TBL] [Abstract][Full Text] [Related]
15. Production of conjugated linoleic acid by probiotic Lactobacillus acidophilus La-5. Macouzet M; Lee BH; Robert N J Appl Microbiol; 2009 Jun; 106(6):1886-91. PubMed ID: 19228257 [TBL] [Abstract][Full Text] [Related]
16. Co-culture fermentation of peanut-soy milk for the development of a novel functional beverage. Santos CC; Libeck Bda S; Schwan RF Int J Food Microbiol; 2014 Sep; 186():32-41. PubMed ID: 24984220 [TBL] [Abstract][Full Text] [Related]
17. The application of extremely low-frequency (ELF) magnetic fields to accelerate the growth of Lactobacillus acidophilus L. bacteria and the milk fermentation process. Tirono M Acta Sci Pol Technol Aliment; 2022; 21(1):31-38. PubMed ID: 35174686 [TBL] [Abstract][Full Text] [Related]
18. Physicochemical, Nutritional, and Organoleptic Characterization of a Skimmed Goat Milk Fermented with the Probiotic Strain Moreno-Montoro M; Navarro-Alarcón M; Bergillos-Meca T; Giménez-Martínez R; Sánchez-Hernández S; Olalla-Herrera M Nutrients; 2018 May; 10(5):. PubMed ID: 29772827 [TBL] [Abstract][Full Text] [Related]
19. Study of the Efficacy of Probiotic Bacteria to Reduce Acrylamide in Food and In Vitro Digestion. Choi SM; Yang L; Chang Y; Chu IK; Dong N Foods; 2022 Apr; 11(9):. PubMed ID: 35563986 [TBL] [Abstract][Full Text] [Related]
20. Lactobacillus acidophilus KLDS 1.0738 inhibits TLR4/NF-κB inflammatory pathway in β-lactoglobulin-induced macrophages via modulating miR-146a. Li A; Yang J; Zhang C; Chi H; Zhang C; Li T; Zhang J; Du P J Food Biochem; 2021 Oct; 45(10):e13662. PubMed ID: 33990976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]