These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35159696)

  • 1. Plasmonically Enhanced Superradiance of Broken-Symmetry Diamond Color Center Arrays Inside Core-Shell Nanoresonators.
    Vass D; Szenes A; Bánhelyi B; Csete M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superradiant diamond color center arrays coupled to concave plasmonic nanoresonators.
    Vass D; Szenes A; Bánhelyi B; Csendes T; Szabó G; Csete M
    Opt Express; 2019 Oct; 27(22):31176-31192. PubMed ID: 31684358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved emission of SiV diamond color centers embedded into concave plasmonic core-shell nanoresonators.
    Szenes A; Bánhelyi B; Szabó LZ; Szabó G; Csendes T; Csete M
    Sci Rep; 2017 Oct; 7(1):13845. PubMed ID: 29062011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Diamond Color Center Fluorescence via Optimized Configurations of Plasmonic Core-Shell Nanoresonator Dimers.
    Szenes A; Vass DI; Bánhelyi B; Csete M
    ACS Omega; 2023 Nov; 8(44):41356-41362. PubMed ID: 37970031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Individual Nanoresonators Optimized for Lasing and Spasing Operation.
    Szenes A; Vass D; Bánhelyi B; Csete M
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Fluorescence Enhancement of Plasmonic Nanorod Coupled Dye Molecules.
    Tóth E; Ungor D; Novák T; Ferenc G; Bánhelyi B; Csapó E; Erdélyi M; Csete M
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32485951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature spontaneous superradiance from single diamond nanocrystals.
    Bradac C; Johnsson MT; Breugel MV; Baragiola BQ; Martin R; Juan ML; Brennen GK; Volz T
    Nat Commun; 2017 Oct; 8(1):1205. PubMed ID: 29089492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solitary Oxygen Dopant Emission from Carbon Nanotubes Modified by Dielectric Metasurfaces.
    Ma X; James AR; Hartmann NF; Baldwin JK; Dominguez J; Sinclair MB; Luk TS; Wolf O; Liu S; Doorn SK; Htoon H; Brener I
    ACS Nano; 2017 Jun; 11(6):6431-6439. PubMed ID: 28535349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Dielectric Nanopillar Antenna-Resonators for Efficient Collected Photon Rate from Silicon Carbide Color Centers.
    Inam FA; Castelletto S
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative Energy Transfer Controls the Spontaneous Emission Rate Beyond Field Enhancement Limits.
    ElKabbash M; Miele E; Fumani AK; Wolf MS; Bozzola A; Haber E; Shahbazyan TV; Berezovsky J; De Angelis F; Strangi G
    Phys Rev Lett; 2019 May; 122(20):203901. PubMed ID: 31172774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling collective spontaneous emission with plasmonic waveguides.
    Li Y; Argyropoulos C
    Opt Express; 2016 Nov; 24(23):26696-26708. PubMed ID: 27857400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality of Dicke superradiance in arrays of quantum emitters.
    Masson SJ; Asenjo-Garcia A
    Nat Commun; 2022 Apr; 13(1):2285. PubMed ID: 35477714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Generalized Analytical Expression for the Resonance Frequencies of Plasmonic Nanoresonators Composed of Folded Rectangular Geometries.
    Lu H; Li L; Zhang J; Xia S; Kang X; Huang M; Shen K; Dong C; Zhang X
    Sci Rep; 2019 Jan; 9(1):52. PubMed ID: 30631122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-dielectric antennas for efficient photon collection from diamond color centers.
    Karamlou A; Trusheim ME; Englund D
    Opt Express; 2018 Feb; 26(3):3341-3352. PubMed ID: 29401863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Decoherence of Superradiance in Lead Halide Perovskite Nanocrystal Superlattices.
    Mattiotti F; Kuno M; Borgonovi F; Jankó B; Celardo GL
    Nano Lett; 2020 Oct; 20(10):7382-7388. PubMed ID: 32969667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of Radiative Damping and Enhancement of Second Harmonic Generation in Bull's Eye Nanoresonators.
    Yi JM; Smirnov V; Piao X; Hong J; Kollmann H; Silies M; Wang W; Groß P; Vogelgesang R; Park N; Lienau C
    ACS Nano; 2016 Jan; 10(1):475-83. PubMed ID: 26635078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically Tunable Spontaneous Superradiance from Mesoscopic Perovskite Emitter Clusters.
    He R; Rasmita A; Zhou L; Liang L; Cai X; Chen J; Cai H; Gao W; Liu X
    J Phys Chem Lett; 2023 Mar; 14(10):2627-2634. PubMed ID: 36888962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond.
    Zhang JL; Sun S; Burek MJ; Dory C; Tzeng YK; Fischer KA; Kelaita Y; Lagoudakis KG; Radulaski M; Shen ZX; Melosh NA; Chu S; Lončar M; Vučković J
    Nano Lett; 2018 Feb; 18(2):1360-1365. PubMed ID: 29377701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superradiance paradox in waveguide lattices.
    Longhi S
    Opt Lett; 2020 Jun; 45(12):3297-3300. PubMed ID: 32538967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers.
    Zhang JL; Ishiwata H; Babinec TM; Radulaski M; Müller K; Lagoudakis KG; Dory C; Dahl J; Edgington R; Soulière V; Ferro G; Fokin AA; Schreiner PR; Shen ZX; Melosh NA; Vučković J
    Nano Lett; 2016 Jan; 16(1):212-7. PubMed ID: 26695059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.