BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 35159698)

  • 1. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines.
    El-Hammadi MM; Arias JL
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo evaluation of Δ⁹-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy.
    Martín-Banderas L; Muñoz-Rubio I; Prados J; Álvarez-Fuentes J; Calderón-Montaño JM; López-Lázaro M; Arias JL; Leiva MC; Holgado MA; Fernández-Arévalo M
    Int J Pharm; 2015 Jun; 487(1-2):205-12. PubMed ID: 25899283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications.
    Bose RJ; Lee SH; Park H
    Biomater Res; 2016; 20():34. PubMed ID: 27807476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD44 targeted PLGA nanomedicines for cancer chemotherapy.
    Saneja A; Arora D; Kumar R; Dubey RD; Panda AK; Gupta PN
    Eur J Pharm Sci; 2018 Aug; 121():47-58. PubMed ID: 29777858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concepts and practices used to develop functional PLGA-based nanoparticulate systems.
    Sah H; Thoma LA; Desu HR; Sah E; Wood GC
    Int J Nanomedicine; 2013; 8():747-65. PubMed ID: 23459088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status.
    van der Meel R; Vehmeijer LJ; Kok RJ; Storm G; van Gaal EV
    Adv Drug Deliv Rev; 2013 Oct; 65(10):1284-98. PubMed ID: 24018362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization.
    Colzani B; Speranza G; Dorati R; Conti B; Modena T; Bruni G; Zagato E; Vermeulen L; Dakwar GR; Braeckmans K; Genta I
    Int J Pharm; 2016 Sep; 511(2):1112-23. PubMed ID: 27511710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin.
    Liu CW; Lin WJ
    Int J Nanomedicine; 2012; 7():4749-67. PubMed ID: 22973097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin E-Oligo(methyl diglycol l-glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles.
    Wu J; Zhang J; Deng C; Meng F; Zhong Z
    Biomacromolecules; 2016 Jul; 17(7):2367-74. PubMed ID: 27305935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles.
    Valencia PM; Hanewich-Hollatz MH; Gao W; Karim F; Langer R; Karnik R; Farokhzad OC
    Biomaterials; 2011 Sep; 32(26):6226-33. PubMed ID: 21658757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles.
    Partikel K; Korte R; Stein NC; Mulac D; Herrmann FC; Humpf HU; Langer K
    Eur J Pharm Biopharm; 2019 Aug; 141():70-80. PubMed ID: 31082511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery.
    Liu Y; Li K; Liu B; Feng SS
    Biomaterials; 2010 Dec; 31(35):9145-55. PubMed ID: 20864169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery.
    Avgoustakis K
    Curr Drug Deliv; 2004 Oct; 1(4):321-33. PubMed ID: 16305394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and in vitro evaluation of doxorubicin-loaded Fe₃O₄ magnetic nanoparticles modified with biocompatible copolymers.
    Akbarzadeh A; Mikaeili H; Zarghami N; Mohammad R; Barkhordari A; Davaran S
    Int J Nanomedicine; 2012; 7():511-26. PubMed ID: 22334781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers.
    Stolnik S; Dunn SE; Garnett MC; Davies MC; Coombes AG; Taylor DC; Irving MP; Purkiss SC; Tadros TF; Davis SS
    Pharm Res; 1994 Dec; 11(12):1800-8. PubMed ID: 7899246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment.
    Ma Y; Zheng Y; Liu K; Tian G; Tian Y; Xu L; Yan F; Huang L; Mei L
    Nanoscale Res Lett; 2010 May; 5(7):1161-9. PubMed ID: 20596457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PLGA-loaded nanomedicines in melanoma treatment: Future prospect for efficient drug delivery.
    Das S; Khuda-Bukhsh AR
    Indian J Med Res; 2016 Aug; 144(2):181-193. PubMed ID: 27934796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetic Consequences of PLGA Nanoparticles in Docetaxel Drug Delivery.
    Rafiei P; Haddadi A
    Pharm Nanotechnol; 2017; 5(1):3-23. PubMed ID: 28948907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats.
    Li Y; Pei Y; Zhang X; Gu Z; Zhou Z; Yuan W; Zhou J; Zhu J; Gao X
    J Control Release; 2001 Apr; 71(2):203-11. PubMed ID: 11274752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery.
    Wang Y; Li P; Kong L
    AAPS PharmSciTech; 2013 Jun; 14(2):585-92. PubMed ID: 23463262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.