BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35159753)

  • 1. Enhanced Electroluminescence via a Nanohybrid Material Consisting of Aromatic Ligand-Modified InP Quantum Dots and an Electron-Blocking Polymer as the Single Active Layer in Quantum Dot-LEDs.
    Choi HS; Janietz S; Roddatis V; Geßner A; Wedel A; Kim J; Kim Y
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes.
    Shen H; Cao W; Shewmon NT; Yang C; Li LS; Xue J
    Nano Lett; 2015 Feb; 15(2):1211-6. PubMed ID: 25580801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Structure for InP/ZnS-Based Electroluminescence Device by Embedding the Emitters in the Electron-Dominating Interface.
    Wang Y; Chen Z; Wang T; Zhang H; Zhang H; Wang R; Ji W
    J Phys Chem Lett; 2020 Mar; 11(5):1835-1839. PubMed ID: 32077702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes.
    Kuo TR; Hung ST; Lin YT; Chou TL; Kuo MC; Kuo YP; Chen CC
    Nanoscale Res Lett; 2017 Sep; 12(1):537. PubMed ID: 28929358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Injection and Energy Transfer of Surface-Engineered InP/ZnSe/ZnS Quantum Dots.
    Park J; Kim T; Kim D
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved electroluminescence of quantum dot light-emitting diodes enabled by a partial ligand exchange with benzenethiol.
    Kim D; Fu Y; Kim J; Lee KH; Kim H; Yang H; Chae H
    Nanotechnology; 2016 Jun; 27(24):245203. PubMed ID: 27159925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semitransparent quantum dot light-emitting diodes by cadmium-free colloidal quantum dots.
    Kim Y; Ippen C; Greco T; Oh MS; Chul JH; Lee J; Wedel A; Kim J
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8636-40. PubMed ID: 25958576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis.
    Kim J; Kim Y; Park K; Boeffel C; Choi HS; Taubert A; Wedel A
    Small; 2022 Oct; 18(40):e2203093. PubMed ID: 36069261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes.
    Won YH; Cho O; Kim T; Chung DY; Kim T; Chung H; Jang H; Lee J; Kim D; Jang E
    Nature; 2019 Nov; 575(7784):634-638. PubMed ID: 31776489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-Dot Light-Emitting Diodes Exhibiting Narrow-Spectrum Green Electroluminescence by Using Ag-In-Ga-S/GaS
    Motomura G; Uematsu T; Kuwabata S; Kameyama T; Torimoto T; Tsuzuki T
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8336-8344. PubMed ID: 36732881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative Trion Auger Recombination in Highly Luminescent InP/ZnSe/ZnS Quantum Dots.
    Kim T; Won YH; Jang E; Kim D
    Nano Lett; 2021 Mar; 21(5):2111-2116. PubMed ID: 33635669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Cadmium-Free Inverted Red Quantum Dot Light-Emitting Diodes.
    Lee CY; Naik Mude N; Lampande R; Eun KJ; Yeom JE; Choi HS; Sohn SH; Yoo JM; Kwon JH
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36917-36924. PubMed ID: 31529962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The work mechanism and sub-bandgap-voltage electroluminescence in inverted quantum dot light-emitting diodes.
    Ji W; Jing P; Zhang L; Li D; Zeng Q; Qu S; Zhao J
    Sci Rep; 2014 Nov; 4():6974. PubMed ID: 25382713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme.
    Kim HJ; Jo JH; Yoon SY; Jo DY; Kim HS; Park B; Yang H
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrow Intrinsic Line Widths and Electron-Phonon Coupling of InP Colloidal Quantum Dots.
    Berkinsky DB; Proppe AH; Utzat H; Krajewska CJ; Sun W; Šverko T; Yoo JJ; Chung H; Won YH; Kim T; Jang E; Bawendi MG
    ACS Nano; 2023 Feb; 17(4):3598-3609. PubMed ID: 36758155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.
    Liu X; Zhao S; Gu W; Zhang Y; Qiao X; Ni Z; Pi X; Yang D
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5959-5966. PubMed ID: 29345903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes.
    Barettin D; Auf der Maur M; di Carlo A; Pecchia A; Tsatsulnikov AF; Lundin WV; Sakharov AV; Nikolaev AE; Korytov M; Cherkashin N; Hÿtch MJ; Karpov SY
    Nanotechnology; 2017 Jul; 28(27):275201. PubMed ID: 28612754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Positive Incentive" Approach To Enhance the Operational Stability of Quantum Dot-Based Light-Emitting Diodes.
    Rhee S; Chang JH; Hahm D; Kim K; Jeong BG; Lee HJ; Lim J; Char K; Lee C; Bae WK
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40252-40259. PubMed ID: 31590488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steering Interface Dipoles for Bright and Efficient All-Inorganic Quantum Dot Based Light-Emitting Diodes.
    Rhee S; Hahm D; Seok HJ; Chang JH; Jung D; Park M; Hwang E; Lee DC; Park YS; Kim HK; Bae WK
    ACS Nano; 2021 Dec; 15(12):20332-20340. PubMed ID: 34866380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balanced Charge Carrier Transport Mediated by Quantum Dot Film Post-organization for Light-Emitting Diode Applications.
    Cho Y; Lim J; Li M; Pak S; Wang ZK; Yang YG; Abate A; Li Z; Snaith HJ; Hou B; Cha S
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26170-26179. PubMed ID: 34039003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.