These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35159781)

  • 1. Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview.
    Suhalim NS; Kasim N; Mahmoudi E; Shamsudin IJ; Mohammad AW; Mohamed Zuki F; Jamari NL
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms.
    Matin A; Jillani SMS; Baig U; Ihsanullah I; Alhooshani K
    J Environ Manage; 2023 Jul; 338():117682. PubMed ID: 37003228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation.
    Léniz-Pizarro F; Liu C; Colburn A; Escobar IC; Bhattacharyya D
    J Memb Sci; 2021 Feb; 620():. PubMed ID: 35002049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T
    Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
    Yang L; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Jun; 116():116-125. PubMed ID: 28324708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes.
    Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G
    J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rejection efficiency of water quality parameters by reverse osmosis and nanofiltration membranes.
    Peng W; Escobar IC
    Environ Sci Technol; 2003 Oct; 37(19):4435-41. PubMed ID: 14572097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resource recovery from RO concentrate using nanofiltration: Impact of active layer thickness on performance.
    Du Y; Pramanik BK; Zhang Y; Jegatheesan V
    Environ Res; 2023 Aug; 231(Pt 3):116265. PubMed ID: 37263466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of pharmaceuticals and personal care products (PPCPs) and environmental estrogens (EEs) from water using positively charged hollow fiber nanofiltration membrane.
    Wei X; Zhang Q; Cao S; Xu X; Chen Y; Liu L; Yang R; Chen J; Lv B
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8486-8497. PubMed ID: 33067789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminophosphonates in Nanofiltration and Reverse Osmosis Permeates.
    Kuhn R; Vornholt C; Preuß V; Bryant IM; Martienssen M
    Membranes (Basel); 2021 Jun; 11(6):. PubMed ID: 34203777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes.
    Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC
    Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Application of the Nanofiltration Membrane NF270 for Separation of Fermentation Broths.
    Tomczak W
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of organic contaminants by RO and NF membranes.
    Yoon Y; Lueptow RM
    J Memb Sci; 2005 Sep; 261(1-2):76-86. PubMed ID: 16134262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute-Membrane Interactions.
    Giacobbo A; Pasqualotto IF; Machado Filho RCC; Minhalma M; Bernardes AM; Pinho MN
    Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models.
    Zhu T; Zhang Y; Tao C; Chen W; Cheng H
    Sci Total Environ; 2023 Jan; 857(Pt 1):159348. PubMed ID: 36228787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fit-for-Purpose Design of Nanofiltration Membranes for Simultaneous Nutrient Recovery and Micropollutant Removal.
    Zhao Y; Tong X; Chen Y
    Environ Sci Technol; 2021 Mar; 55(5):3352-3361. PubMed ID: 33596060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures.
    Tsuru T; Ogawa K; Kanezashi M; Yoshioka T
    Langmuir; 2010 Jul; 26(13):10897-905. PubMed ID: 20405860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions.
    Wadekar SS; Vidic RD
    Environ Sci Technol; 2017 May; 51(10):5658-5665. PubMed ID: 28414440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.