BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 35159788)

  • 21. A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells.
    Dong J; Guo J; Wang X; Dong P; Wang Z; Zhou Y; Miao Y; Zhao B; Hao Y; Wang H; Xu B; Yin S
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46373-46380. PubMed ID: 32945159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finetuning Hole-Extracting Monolayers for Efficient Organic Solar Cells.
    Bin H; Datta K; Wang J; van der Pol TPA; Li J; Wienk MM; Janssen RAJ
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16497-16504. PubMed ID: 35352932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of Donor Polymers with Strong Temperature-Dependent Aggregation Property for Efficient Organic Photovoltaics.
    Hu H; Chow PCY; Zhang G; Ma T; Liu J; Yang G; Yan H
    Acc Chem Res; 2017 Oct; 50(10):2519-2528. PubMed ID: 28915001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unusual Hole Transfer Dynamics of the NiO Layer in Methylammonium Lead Tri-iodide Absorber Solar Cells.
    Yang H; Park H; Kim B; Park C; Jeong S; Chae WS; Kim W; Jeong M; Ahn TK; Shin H
    J Phys Chem Lett; 2021 Mar; 12(11):2770-2779. PubMed ID: 33709718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward Efficient Tandem Organic Solar Cells: From Materials to Device Engineering.
    Zhang K; Ying L; Yip HL; Huang F; Cao Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):39937-39947. PubMed ID: 32840356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Employing Equivalent Circuit Models to Study the Performance of Selenium-Based Solar Cells with Polymers as Hole Transport Layers.
    Liu W; Yu F; Fan W; Li WS; Zhang Q
    Small; 2021 Sep; 17(36):e2101226. PubMed ID: 34323356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency.
    Wan J; Xia Y; Fang J; Zhang Z; Xu B; Wang J; Ai L; Song W; Hui KN; Fan X; Li Y
    Nanomicro Lett; 2021 Jan; 13(1):44. PubMed ID: 34138225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells.
    Rajeswari R; Mrinalini M; Prasanthkumar S; Giribabu L
    Chem Rec; 2017 Jul; 17(7):681-699. PubMed ID: 28052541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress in Stability of Organic Solar Cells.
    Duan L; Uddin A
    Adv Sci (Weinh); 2020 Jun; 7(11):1903259. PubMed ID: 32537401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells.
    Zhou H; Zhang Y; Mai CK; Collins SD; Nguyen TQ; Bazan GC; Heeger AJ
    Adv Mater; 2014 Feb; 26(5):780-5. PubMed ID: 24170587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Printable and Semitransparent Nonfullerene Organic Solar Modules over 30 cm
    Han YW; Lee HS; Moon DK
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19085-19098. PubMed ID: 33784450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing.
    Ioakeimidis A; Papadas IT; Koutsouroubi ED; Armatas GS; Choulis SA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of interface properties in CuPc based hybrid inorganic-organic solar cells.
    Thalluri GK; Spoltore D; Piersimoni F; Clifford JN; Palomares E; Manca JV
    Dalton Trans; 2012 Oct; 41(37):11419-23. PubMed ID: 22890562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fullerene-Based Interlayers for Breaking Energy Barriers in Organic Solar Cells.
    Gu Y; Liu Y; Russell TP
    Chempluschem; 2020 Apr; 85(4):751-759. PubMed ID: 32286736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells.
    Seo S; Park IJ; Kim M; Lee S; Bae C; Jung HS; Park NG; Kim JY; Shin H
    Nanoscale; 2016 Jun; 8(22):11403-12. PubMed ID: 27216291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Applications of Carbon Nanotubes in Organic Solar Cells.
    Muchuweni E; Mombeshora ET; Martincigh BS; Nyamori VO
    Front Chem; 2021; 9():733552. PubMed ID: 35071180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multifunctional Fischer Aminocarbene Complexes as Hole or Electron Transporting Layers in Organic Solar Cells.
    Vidal-García P; Sánchez-Vergara ME; Corona-Sánchez R; Jiménez-Sandoval O; Mercado EG; Toscano RA; Álvarez-Toledano C
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29587345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers.
    Kranthiraja K; Gunasekar K; Kim H; Cho AN; Park NG; Kim S; Kim BJ; Nishikubo R; Saeki A; Song M; Jin SH
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28394431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing the Depletion Region Width at the Anode Interface via a Highly Doped Conjugated Polyelectrolyte Composite for Efficient Organic Solar Cells.
    Wang H; Liu S; Yang Y; Li H; Wei Z; Cheng Y; Hou J; Xu B
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3744-3754. PubMed ID: 38224058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic layer deposition of NiO hole-transporting layers for polymer solar cells.
    Hsu CC; Su HW; Hou CH; Shyue JJ; Tsai FY
    Nanotechnology; 2015 Sep; 26(38):385201. PubMed ID: 26314591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.