These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35159796)

  • 21. Earth-abundant oxygen evolution catalysts coupled onto ZnO nanowire arrays for efficient photoelectrochemical water cleavage.
    Jiang C; Moniz SJ; Khraisheh M; Tang J
    Chemistry; 2014 Sep; 20(40):12954-61. PubMed ID: 25156820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile Zn and Ni Co-Doped Hematite Nanorods for Efficient Photocatalytic Water Oxidation.
    Talibawo J; Kyesmen PI; Cyulinyana MC; Diale M
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous Modulation of Interface Reinforcement, Crystallization, Anti-Reflection, and Carrier Transport in Sb Gradient-Doped SnO
    Han J; Yan H; Hu C; Song Q; Kang J; Guo Y; Liu Z
    Small; 2022 Feb; 18(6):e2105026. PubMed ID: 35142067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S)
    Chae SY; Park SJ; Han SG; Jung H; Kim CW; Jeong C; Joo OS; Min BK; Hwang YJ
    J Am Chem Soc; 2016 Dec; 138(48):15673-15681. PubMed ID: 27934030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical CdS Nanorod@SnO
    Wang W; Jin C; Qi L
    Small; 2018 Jul; ():e1801352. PubMed ID: 30027578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GaP/GaNP Heterojunctions for Efficient Solar-Driven Water Oxidation.
    Kargar A; Sukrittanon S; Zhou C; Ro YG; Pan X; Dayeh SA; Tu CW; Jin S
    Small; 2017 Jun; 13(21):. PubMed ID: 28371293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper-doped ZrO
    Reddy CV; Reddy IN; Ravindranadh K; Reddy KR; Shetti NP; Kim D; Shim J; Aminabhavi TM
    J Environ Manage; 2020 Apr; 260():110088. PubMed ID: 31941628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting.
    Iqbal N; Khan I; Ali A; Qurashi A
    J Adv Res; 2022 Feb; 36():15-26. PubMed ID: 35127161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acceptor-Doping Accelerated Charge Separation in Cu
    Zhang M; Wang J; Xue H; Zhang J; Peng S; Han X; Deng Y; Hu W
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18463-18467. PubMed ID: 32533640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Growth of Polymeric Carbon Nitride Nanosheet Photoanode for Greatly Efficient Photoelectrochemical Water-Splitting.
    Zhang J; Zhang J; Dong C; Xia Y; Jiang L; Wang G; Wang R; Chen J
    Small; 2023 Aug; 19(34):e2208049. PubMed ID: 37127867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transferred monolayer MoS
    Hassan MA; Kim MW; Johar MA; Waseem A; Kwon MK; Ryu SW
    Sci Rep; 2019 Dec; 9(1):20141. PubMed ID: 31882920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering paper-based visible light-responsive Sn-self doped domed SnO
    Yu H; Tan X; Sun S; Zhang L; Gao C; Ge S
    Biosens Bioelectron; 2021 Aug; 185():113250. PubMed ID: 33915433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Dual-Ligand Strategy to Regulate the Nucleation and Growth of Lead Chromate Photoanodes for Photoelectrochemical Water Splitting.
    Zhou H; Zhang D; Gong X; Feng Z; Shi M; Liu Y; Zhang C; Luan P; Zhang P; Fan F; Li R; Li C
    Adv Mater; 2022 Jul; 34(29):e2110610. PubMed ID: 35589018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of doping (C or N) and co-doping (C+N) on the photoactive properties of magnetron sputtered titania coatings for the application of solar water-splitting.
    Rahman M; Dang BH; McDonnell K; MacElroy JM; Dowling DP
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4729-35. PubMed ID: 22905523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation.
    Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q
    Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Water Oxidation Using Ta
    Higashi T; Nishiyama H; Otsuka Y; Kawase Y; Sasaki Y; Nakabayashi M; Katayama M; Minegishi T; Shibata N; Takanabe K; Yamada T; Domen K
    ChemSusChem; 2020 Apr; 13(8):1974-1978. PubMed ID: 32129007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bi
    Song Q; Wu P; Sarkar S; Zhao Y; Liu Z
    Dalton Trans; 2020 Jan; 49(1):147-155. PubMed ID: 31793580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-Cost, Efficient, and Durable H
    Muzzillo CP; Klein WE; Li Z; DeAngelis AD; Horsley K; Zhu K; Gaillard N
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19573-19579. PubMed ID: 29767955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion.
    Xu M; Da P; Wu H; Zhao D; Zheng G
    Nano Lett; 2012 Mar; 12(3):1503-8. PubMed ID: 22364360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system.
    Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P
    ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.